Spaces:
Build error
Build error
seyia92coding
commited on
Commit
•
614e80b
1
Parent(s):
e546a30
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""HS_Recomm_Metacritic_Gradio.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1cIAUS8Z2U2DXPEVmRdou9mqI0vwNT0_0
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import scipy as sp
|
13 |
+
from scipy import sparse
|
14 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
15 |
+
!pip install fuzzywuzzy
|
16 |
+
from fuzzywuzzy import fuzz
|
17 |
+
|
18 |
+
meta_df = pd.read_csv("/content/Metacritic_Scores_File.csv", error_bad_lines=False, encoding='utf-8')
|
19 |
+
meta_df = meta_df[['game', 'reviewer_ID', 'score']]
|
20 |
+
|
21 |
+
df_game_names = pd.read_csv("/content/Game_Titles_IDs.csv", error_bad_lines=False, encoding='utf-8')
|
22 |
+
|
23 |
+
#We will create a pivot table of users as rows and games as columns.
|
24 |
+
#The pivot table will help us make the calcuations of similarity between the reviewers.
|
25 |
+
pivot = meta_df.pivot_table(index=['reviewer_ID'], columns=['game'], values='score')
|
26 |
+
|
27 |
+
#Applying lambda function to multiple rows using Dataframe.apply()
|
28 |
+
#(x-np.mean(x))/(np.max(x)-np.min(x)) = Formula
|
29 |
+
pivot_n = pivot.apply(lambda x: (x-np.mean(x))/(np.max(x)-np.min(x)), axis=1)
|
30 |
+
|
31 |
+
# step 2 - Fill NaNs with Zeros
|
32 |
+
pivot_n.fillna(0, inplace=True)
|
33 |
+
|
34 |
+
# step 3 - Transpose the pivot table
|
35 |
+
pivot_n = pivot_n.T
|
36 |
+
|
37 |
+
# step 4 - Locate the columns that are not zero (unrated)
|
38 |
+
pivot_n = pivot_n.loc[:, (pivot_n != 0).any(axis=0)]
|
39 |
+
|
40 |
+
# step 5 - Create a sparse matrix based on our pivot table
|
41 |
+
piv_sparse = sp.sparse.csr_matrix(pivot_n.values)
|
42 |
+
|
43 |
+
#Compute cosine similarity between samples in X and Y.
|
44 |
+
game_similarity = cosine_similarity(piv_sparse)
|
45 |
+
|
46 |
+
#Turn our similarity kernel matrix into a dataframe
|
47 |
+
game_sim_df = pd.DataFrame(game_similarity, index = pivot_n.index, columns = pivot_n.index)
|
48 |
+
|
49 |
+
# create a function to find the closest title
|
50 |
+
def matching_score(a,b):
|
51 |
+
#fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance
|
52 |
+
return fuzz.ratio(a,b)
|
53 |
+
# exactly the same, the score becomes 100
|
54 |
+
|
55 |
+
# a function to convert index to title
|
56 |
+
def get_title_from_index(index):
|
57 |
+
return df_game_names.iloc[index]['game']
|
58 |
+
|
59 |
+
# a function to return the most similar title to the words a user type
|
60 |
+
def find_closest_title(title):
|
61 |
+
#matching_score(a,b) > a is the current row, b is the title we're trying to match
|
62 |
+
leven_scores = list(enumerate(df_game_names['game'].apply(matching_score, b=title)))
|
63 |
+
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True)
|
64 |
+
closest_title = get_title_from_index(sorted_leven_scores[0][0])
|
65 |
+
distance_score = sorted_leven_scores[0][1]
|
66 |
+
return closest_title, distance_score
|
67 |
+
# Bejeweled Twist, 100
|
68 |
+
|
69 |
+
def game_recommendation(game):
|
70 |
+
#Insert closest title here
|
71 |
+
game, distance_score = find_closest_title(game)
|
72 |
+
#Counter for Ranking
|
73 |
+
number = 1
|
74 |
+
print('Recommended because you played {}:\n'.format(game))
|
75 |
+
|
76 |
+
for n in game_sim_df.sort_values(by = game, ascending = False).index[1:6]:
|
77 |
+
print("#" + str(number) + ": " + n + ", " + str(round(game_sim_df[game][n]*100,2)) + "% " + "match")
|
78 |
+
number +=1
|
79 |
+
|
80 |
+
!pip install gradio
|
81 |
+
|
82 |
+
import gradio as gr
|
83 |
+
|
84 |
+
recommender_interface = gr.Interface(game_recommendation, ["text"],
|
85 |
+
["text"], title="Top 5 Game Recommendations", description="This is a Recommendation Engine based on how Metacritic professional reviewers have scored games up to 2019 (apologies for the out of date data). Simply input a game you have enjoyed playing and it should return 5 games that have been rated similarily")
|
86 |
+
|
87 |
+
recommender_interface.launch(debug=True)
|