Spaces:
Build error
Build error
seyia92coding
commited on
Commit
•
1158955
1
Parent(s):
009aa51
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""HS_Text_REC_Games_Gradio_Blocks.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/19yJ8RC70IDljwSmPlqtOzWz192gwLAHF
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
from fuzzywuzzy import fuzz
|
13 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
14 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
df = pd.read_csv("Metacritic_Reviews_Only.csv", error_bad_lines=False, encoding='utf-8')
|
18 |
+
|
19 |
+
#Remove title from review
|
20 |
+
def remove_title(row):
|
21 |
+
game_title = row['Game Title']
|
22 |
+
body_text = row['Reviews']
|
23 |
+
new_doc = body_text.replace(game_title, "")
|
24 |
+
return new_doc
|
25 |
+
|
26 |
+
df['Reviews'] = df.apply(remove_title, axis=1)
|
27 |
+
#drop redundant column
|
28 |
+
df = df.drop(['Unnamed: 0'], axis=1)
|
29 |
+
|
30 |
+
df.dropna(inplace=True) #Drop Null Reviews
|
31 |
+
|
32 |
+
# Instantiate the vectorizer object to the vectorizer variable
|
33 |
+
#Minimum word count 2 to be included, words that appear in over 70% of docs should not be included
|
34 |
+
vectorizer = TfidfVectorizer(min_df=2, max_df=0.7)
|
35 |
+
|
36 |
+
# Fit and transform the plot column
|
37 |
+
vectorized_data = vectorizer.fit_transform(df['Reviews'])
|
38 |
+
|
39 |
+
# Create Dataframe from TF-IDFarray
|
40 |
+
tfidf_df = pd.DataFrame(vectorized_data.toarray(), columns=vectorizer.get_feature_names())
|
41 |
+
|
42 |
+
# Assign the game titles to the index
|
43 |
+
tfidf_df.index = df['Game Title']
|
44 |
+
|
45 |
+
# Find the cosine similarity measures between all game and assign the results to cosine_similarity_array.
|
46 |
+
cosine_similarity_array = cosine_similarity(tfidf_df)
|
47 |
+
|
48 |
+
# Create a DataFrame from the cosine_similarity_array with tfidf_df.index as its rows and columns.
|
49 |
+
cosine_similarity_df = pd.DataFrame(cosine_similarity_array, index=tfidf_df.index, columns=tfidf_df.index)
|
50 |
+
|
51 |
+
# Find the values for the game Batman: Arkham City
|
52 |
+
cosine_similarity_series = cosine_similarity_df.loc['Batman: Arkham City']
|
53 |
+
|
54 |
+
# Sort these values highest to lowest
|
55 |
+
ordered_similarities = cosine_similarity_series.sort_values(ascending=False)
|
56 |
+
|
57 |
+
# Print the results
|
58 |
+
print(ordered_similarities)
|
59 |
+
|
60 |
+
# create a function to find the closest title
|
61 |
+
def matching_score(a,b):
|
62 |
+
#fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance
|
63 |
+
return fuzz.ratio(a,b)
|
64 |
+
# exactly the same, the score becomes 100
|
65 |
+
|
66 |
+
#Convert index to title_year
|
67 |
+
def get_title_from_index(index):
|
68 |
+
return df[df.index == index]['Game Title'].values[0]
|
69 |
+
|
70 |
+
# A function to return the most similar title to the words a user type
|
71 |
+
# Without this, the recommender only works when a user enters the exact title which the data has.
|
72 |
+
def find_closest_title(title):
|
73 |
+
#matching_score(a,b) > a is the current row, b is the title we're trying to match
|
74 |
+
leven_scores = list(enumerate(df['Game Title'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index
|
75 |
+
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~]
|
76 |
+
closest_title = get_title_from_index(sorted_leven_scores[0][0])
|
77 |
+
distance_score = sorted_leven_scores[0][1]
|
78 |
+
return closest_title, distance_score
|
79 |
+
# Bejeweled Twist, 100
|
80 |
+
|
81 |
+
def find_closest_titles(title):
|
82 |
+
leven_scores = list(enumerate(df['Game Title'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index
|
83 |
+
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~]
|
84 |
+
closest_titles = [get_title_from_index(sorted_leven_scores[i][0]) for i in range(5)]
|
85 |
+
distance_scores = [sorted_leven_scores[i][1] for i in range(5)]
|
86 |
+
return closest_titles, distance_scores
|
87 |
+
# Bejeweled Twist, 100
|
88 |
+
|
89 |
+
def recommend_games_v1(game1, game2, game3, max_results):
|
90 |
+
#Counter for Ranking
|
91 |
+
number = 1
|
92 |
+
print('Recommended because you played {}, {} and {}:\n'.format(game1, game2, game3))
|
93 |
+
|
94 |
+
list_of_games_enjoyed = [game1, game2, game3]
|
95 |
+
games_enjoyed_df = tfidf_df.reindex(list_of_games_enjoyed)
|
96 |
+
user_prof = games_enjoyed_df.mean()
|
97 |
+
|
98 |
+
tfidf_subset_df = tfidf_df.drop([game1, game2, game3], axis=0)
|
99 |
+
similarity_array = cosine_similarity(user_prof.values.reshape(1, -1), tfidf_subset_df)
|
100 |
+
similarity_df = pd.DataFrame(similarity_array.T, index=tfidf_subset_df.index, columns=["similarity_score"])
|
101 |
+
|
102 |
+
# Sort the values from high to low by the values in the similarity_score
|
103 |
+
sorted_similarity_df = similarity_df.sort_values(by="similarity_score", ascending=False)
|
104 |
+
|
105 |
+
number = 0
|
106 |
+
rank = 1
|
107 |
+
rank_range = []
|
108 |
+
name_list = []
|
109 |
+
score_list = []
|
110 |
+
for n in sorted_similarity_df.index:
|
111 |
+
if rank <= max_results:
|
112 |
+
rank_range.append(rank)
|
113 |
+
name_list.append(n)
|
114 |
+
score_list.append(str(round(sorted_similarity_df.iloc[number]['similarity_score']*100,2)) + "% ") #format score as a percentage
|
115 |
+
number+=1
|
116 |
+
rank +=1
|
117 |
+
#Turn lists into a dictionary
|
118 |
+
data = {'Rank': rank_range, 'Game Title': name_list, '% Match': score_list}
|
119 |
+
rec_table = pd.DataFrame.from_dict(data) #Convert dictionary into dataframe
|
120 |
+
rec_table.set_index('Rank', inplace=True) #Make Rank column the index
|
121 |
+
return rec_table
|
122 |
+
|
123 |
+
demo = gr.Blocks()
|
124 |
+
|
125 |
+
with demo:
|
126 |
+
gr.Markdown(
|
127 |
+
"""
|
128 |
+
# Game Recommendations
|
129 |
+
Input 3 games you enjoyed playing and use the dropdown to confirm your selections. Hopefully they are registered in the database. Once all 3 have been chosen, please generate your recommendations.
|
130 |
+
"""
|
131 |
+
)
|
132 |
+
|
133 |
+
options = ['Dragonball', 'Batman', 'Tekken']
|
134 |
+
def Dropdown_list(x):
|
135 |
+
new_options = [*options, x + " Remastered", x + ": The Remake", x + ": Game of the Year Edition", x + " Steelbook Edition"]
|
136 |
+
return gr.Dropdown.update(choices=new_options)
|
137 |
+
|
138 |
+
with gr.Column(visible=True):
|
139 |
+
first_entry = gr.Textbox(label="Game Title 1")
|
140 |
+
first_dropdown = gr.Dropdown(choices=[], label="Closest Matches")
|
141 |
+
update_first = gr.Button("Match Closest Title 1")
|
142 |
+
|
143 |
+
with gr.Column(visible=True):
|
144 |
+
second_entry = gr.Textbox(label="Game Title 2")
|
145 |
+
second_dropdown = gr.Dropdown(label="Closest Matches")
|
146 |
+
update_second = gr.Button("Match Closest Title 2")
|
147 |
+
|
148 |
+
with gr.Column(visible=True):
|
149 |
+
third_entry = gr.Textbox(label="Game Title 3")
|
150 |
+
third_dropdown = gr.Dropdown(label="Closest Matches")
|
151 |
+
update_third = gr.Button("Match Closest Title 3")
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
slider = gr.Slider(1, 20, step=1)
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
generate = gr.Button("Generate")
|
158 |
+
results = gr.Dataframe(label="Top Results")
|
159 |
+
|
160 |
+
def filter_matches(entry):
|
161 |
+
top_matches = find_closest_titles(entry)
|
162 |
+
top_matches = list(top_matches[0])
|
163 |
+
return gr.Dropdown.update(choices=top_matches) #, gr.update(visible=True)
|
164 |
+
|
165 |
+
def new_match(text):
|
166 |
+
top_match = find_closest_title(text)
|
167 |
+
return text
|
168 |
+
|
169 |
+
first_entry.change(new_match, inputs=first_entry, outputs=first_dropdown)
|
170 |
+
update_first.click(filter_matches, inputs=first_dropdown, outputs=first_dropdown)
|
171 |
+
second_entry.change(new_match, inputs=second_entry, outputs=second_dropdown)
|
172 |
+
update_second.click(filter_matches, inputs=second_dropdown, outputs=second_dropdown)
|
173 |
+
third_entry.change(new_match, inputs=third_entry, outputs=third_dropdown)
|
174 |
+
update_third.click(filter_matches, inputs=third_dropdown, outputs=third_dropdown)
|
175 |
+
|
176 |
+
|
177 |
+
generate.click(recommend_games_v1, inputs=[first_dropdown, second_dropdown, third_dropdown, slider], outputs=results)
|
178 |
+
demo.launch()
|