|
from typing import Any, Dict, Tuple, List |
|
from functools import lru_cache |
|
from cv2.typing import Size |
|
import cv2 |
|
import numpy |
|
|
|
from facefusion.typing import Bbox, Kps, Frame, Matrix, Template, Padding |
|
|
|
TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\ |
|
{ |
|
'arcface_v1': numpy.array( |
|
[ |
|
[ 39.7300, 51.1380 ], |
|
[ 72.2700, 51.1380 ], |
|
[ 56.0000, 68.4930 ], |
|
[ 42.4630, 87.0100 ], |
|
[ 69.5370, 87.0100 ] |
|
]), |
|
'arcface_v2': numpy.array( |
|
[ |
|
[ 38.2946, 51.6963 ], |
|
[ 73.5318, 51.5014 ], |
|
[ 56.0252, 71.7366 ], |
|
[ 41.5493, 92.3655 ], |
|
[ 70.7299, 92.2041 ] |
|
]), |
|
'ffhq': numpy.array( |
|
[ |
|
[ 192.98138, 239.94708 ], |
|
[ 318.90277, 240.1936 ], |
|
[ 256.63416, 314.01935 ], |
|
[ 201.26117, 371.41043 ], |
|
[ 313.08905, 371.15118 ] |
|
]) |
|
} |
|
|
|
|
|
def warp_face(temp_frame : Frame, kps : Kps, template : Template, size : Size) -> Tuple[Frame, Matrix]: |
|
normed_template = TEMPLATES.get(template) * size[1] / size[0] |
|
affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.LMEDS)[0] |
|
crop_frame = cv2.warpAffine(temp_frame, affine_matrix, (size[1], size[1]), borderMode = cv2.BORDER_REPLICATE) |
|
return crop_frame, affine_matrix |
|
|
|
|
|
def paste_back(temp_frame : Frame, crop_frame: Frame, affine_matrix : Matrix, face_mask_blur : float, face_mask_padding : Padding) -> Frame: |
|
inverse_matrix = cv2.invertAffineTransform(affine_matrix) |
|
temp_frame_size = temp_frame.shape[:2][::-1] |
|
mask_size = tuple(crop_frame.shape[:2]) |
|
mask_frame = create_static_mask_frame(mask_size, face_mask_blur, face_mask_padding) |
|
inverse_mask_frame = cv2.warpAffine(mask_frame, inverse_matrix, temp_frame_size).clip(0, 1) |
|
inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE) |
|
paste_frame = temp_frame.copy() |
|
paste_frame[:, :, 0] = inverse_mask_frame * inverse_crop_frame[:, :, 0] + (1 - inverse_mask_frame) * temp_frame[:, :, 0] |
|
paste_frame[:, :, 1] = inverse_mask_frame * inverse_crop_frame[:, :, 1] + (1 - inverse_mask_frame) * temp_frame[:, :, 1] |
|
paste_frame[:, :, 2] = inverse_mask_frame * inverse_crop_frame[:, :, 2] + (1 - inverse_mask_frame) * temp_frame[:, :, 2] |
|
return paste_frame |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def create_static_mask_frame(mask_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Frame: |
|
mask_frame = numpy.ones(mask_size, numpy.float32) |
|
blur_amount = int(mask_size[0] * 0.5 * face_mask_blur) |
|
blur_area = max(blur_amount // 2, 1) |
|
mask_frame[:max(blur_area, int(mask_size[1] * face_mask_padding[0] / 100)), :] = 0 |
|
mask_frame[-max(blur_area, int(mask_size[1] * face_mask_padding[2] / 100)):, :] = 0 |
|
mask_frame[:, :max(blur_area, int(mask_size[0] * face_mask_padding[3] / 100))] = 0 |
|
mask_frame[:, -max(blur_area, int(mask_size[0] * face_mask_padding[1] / 100)):] = 0 |
|
if blur_amount > 0: |
|
mask_frame = cv2.GaussianBlur(mask_frame, (0, 0), blur_amount * 0.25) |
|
return mask_frame |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]: |
|
y, x = numpy.mgrid[:stride_height, :stride_width][::-1] |
|
anchors = numpy.stack((y, x), axis = -1) |
|
anchors = (anchors * feature_stride).reshape((-1, 2)) |
|
anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2)) |
|
return anchors |
|
|
|
|
|
def distance_to_bbox(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Bbox: |
|
x1 = points[:, 0] - distance[:, 0] |
|
y1 = points[:, 1] - distance[:, 1] |
|
x2 = points[:, 0] + distance[:, 2] |
|
y2 = points[:, 1] + distance[:, 3] |
|
bbox = numpy.column_stack([ x1, y1, x2, y2 ]) |
|
return bbox |
|
|
|
|
|
def distance_to_kps(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Kps: |
|
x = points[:, 0::2] + distance[:, 0::2] |
|
y = points[:, 1::2] + distance[:, 1::2] |
|
kps = numpy.stack((x, y), axis = -1) |
|
return kps |
|
|
|
|
|
def apply_nms(bbox_list : List[Bbox], iou_threshold : float) -> List[int]: |
|
keep_indices = [] |
|
dimension_list = numpy.reshape(bbox_list, (-1, 4)) |
|
x1 = dimension_list[:, 0] |
|
y1 = dimension_list[:, 1] |
|
x2 = dimension_list[:, 2] |
|
y2 = dimension_list[:, 3] |
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1) |
|
indices = numpy.arange(len(bbox_list)) |
|
while indices.size > 0: |
|
index = indices[0] |
|
remain_indices = indices[1:] |
|
keep_indices.append(index) |
|
xx1 = numpy.maximum(x1[index], x1[remain_indices]) |
|
yy1 = numpy.maximum(y1[index], y1[remain_indices]) |
|
xx2 = numpy.minimum(x2[index], x2[remain_indices]) |
|
yy2 = numpy.minimum(y2[index], y2[remain_indices]) |
|
width = numpy.maximum(0, xx2 - xx1 + 1) |
|
height = numpy.maximum(0, yy2 - yy1 + 1) |
|
iou = width * height / (areas[index] + areas[remain_indices] - width * height) |
|
indices = indices[numpy.where(iou <= iou_threshold)[0] + 1] |
|
return keep_indices |
|
|