Spaces:
Runtime error
Runtime error
# All the datasets will use the same format: a collection of HDF5 files with data cubes | |
# in t0_fields: scalar fields, like density, pressure, energy | |
# the data is of shape (n_trajectories, n_time_steps, x, y) | |
# in t1_fields: vector fields, like velocity (size=2 => vx, vy) | |
# the data is of shape (n_trajectories, n_time_steps, x, y, vx/vy) | |
# in t2_fields: tensor fields, like ??? | |
# the data is of shape (n_trajectories, n_time_steps, x, y, d1, d2), with d1, d2 in [0, 1] | |
# ie, instead of 1 additional dimension for velocity: a (2,2) matrix where each component | |
# (0,0),(1,0),(0,1),(1,1) can be plotted | |
# Size: | |
# - n_trajectories: 8 to 256 | |
# - n_time_steps: 101 | |
# - x: 128 to 512 | |
# - y: 128 to 512 | |
# - physical fields: 2 to 8 (density, pressure, energy, velocity…) | |
import gradio as gr | |
import h5py | |
import numpy as np | |
from fsspec import url_to_fs | |
from matplotlib import cm | |
from PIL import Image | |
import av | |
from tempfile import gettempdir | |
import os | |
# Get the path of the system's temporary directory | |
temp_directory = gettempdir() | |
print(f"System's temporary directory is: {temp_directory}") | |
videos_temp_directory = os.path.join(temp_directory, "videos") | |
print(f"Videos are saved (and never deleted) in: {videos_temp_directory}") | |
# TODO: add colormap input | |
repo_id = "lhoestq/turbulent_radiative_layer_tcool_demo" | |
set_path = f"hf://datasets/{repo_id}/**/*.hdf5" | |
fs, _ = url_to_fs(set_path) | |
paths = fs.glob(set_path) | |
files = {path: h5py.File(fs.open(path, "rb", cache_type="none"), "r") for path in paths} | |
def get_scalar_fields(path: str) -> list[str]: | |
# TODO: support t1_fields (vector) and t2_fields (tensor) | |
return list(files[path]["t0_fields"].keys()) | |
def get_trajectories(path: str, field: str) -> list[int]: | |
# The first dimension is the trajectory (8 to 256) | |
return list(range(len(files[path]["t0_fields"][field]))) | |
fps = 25 | |
def create_video( | |
path: str, scalar_field: str, trajectory: int, video_filename: str | |
) -> None: | |
out = files[path]["t0_fields"][scalar_field][trajectory] | |
# out = np.log(out) # not sure why | |
out = (out - out.min()) / (out.max() - out.min()) | |
out = np.uint8(cm.viridis(out) * 255) | |
output = av.open(video_filename, "w") | |
stream = output.add_stream("libvpx-vp9", str(fps)) | |
height, width = out[0].shape[1], out[0].shape[0] | |
stream.width = width | |
stream.height = height | |
stream.pix_fmt = "yuv444p" | |
for img in out: | |
image = Image.fromarray(img) | |
# I think it's the way to get the expected orientation | |
image = image.transpose(method=Image.Transpose.TRANSPOSE) | |
image = image.transpose(method=Image.Transpose.FLIP_TOP_BOTTOM) | |
frame = av.VideoFrame.from_image(image) | |
packet = stream.encode(frame) | |
output.mux(packet) | |
# Flush the encoder and close the "in memory" file: | |
packet = stream.encode(None) | |
output.mux(packet) | |
output.close() | |
# no limit on the size of the videos on the disk | |
def get_video(path: str, scalar_field: str, trajectory: int) -> str: | |
video_filename = os.path.join( | |
videos_temp_directory, *path.split("/"), scalar_field, f"{trajectory}.webm" | |
) | |
os.makedirs(os.path.dirname(video_filename), exist_ok=True) | |
if not os.path.isfile(video_filename): | |
create_video(path, scalar_field, trajectory, video_filename) | |
return video_filename | |
with gr.Blocks() as demo: | |
default_scalar_fields = get_scalar_fields(paths[0]) | |
default_trajectories = get_trajectories(paths[0], default_scalar_fields[0]) | |
default_video = get_video( | |
paths[0], default_scalar_fields[0], default_trajectories[0] | |
) | |
gr.Markdown( | |
f"# 💠 HDF5 Viewer for the [{repo_id}](https://huggingface.co/datasets/{repo_id}) Dataset 🌊" | |
) | |
gr.Markdown(f"Showing files at `{set_path}`") | |
with gr.Row(): | |
files_dropdown = gr.Dropdown( | |
choices=paths, value=paths[0], label="File", scale=4 | |
) | |
scalar_fields_dropdown = gr.Dropdown( | |
choices=default_scalar_fields, | |
value=default_scalar_fields[0], | |
label="Physical field", | |
) | |
trajectory_dropdown = gr.Dropdown( | |
choices=default_trajectories, | |
value=default_trajectories[0], | |
label="Trajectory", | |
) | |
video = gr.Video(default_video, height=400, autoplay=True, loop=True) | |
def _update_file(path: str): | |
scalar_fields = get_scalar_fields(path) | |
trajectories = get_trajectories(path, scalar_fields[0]) | |
vid = get_video(path, scalar_fields[0], trajectories[0]) | |
yield { | |
scalar_fields_dropdown: gr.Dropdown( | |
choices=scalar_fields, value=scalar_fields[0] | |
), | |
trajectory_dropdown: gr.Dropdown( | |
choices=trajectories, value=trajectories[0] | |
), | |
video: gr.Video(vid), | |
} | |
def _update_scalar_field(path: str, scalar_field: str): | |
trajectories = get_trajectories(path, scalar_field) | |
vid = get_video(path, scalar_field, trajectories[0]) | |
yield { | |
trajectory_dropdown: gr.Dropdown( | |
choices=trajectories, value=trajectories[0] | |
), | |
video: gr.Video(vid), | |
} | |
def _update_trajectory(path: str, scalar_field: str, trajectory: int): | |
vid = get_video(path, scalar_field, trajectory) | |
yield {video: gr.Video(vid)} | |
demo.launch() | |