severo's picture
severo HF staff
loop and autoplay
59b9a22
# All the datasets will use the same format: a collection of HDF5 files with data cubes
# in t0_fields: scalar fields, like density, pressure, energy
# the data is of shape (n_trajectories, n_time_steps, x, y)
# in t1_fields: vector fields, like velocity (size=2 => vx, vy)
# the data is of shape (n_trajectories, n_time_steps, x, y, vx/vy)
# in t2_fields: tensor fields, like ???
# the data is of shape (n_trajectories, n_time_steps, x, y, d1, d2), with d1, d2 in [0, 1]
# ie, instead of 1 additional dimension for velocity: a (2,2) matrix where each component
# (0,0),(1,0),(0,1),(1,1) can be plotted
# Size:
# - n_trajectories: 8 to 256
# - n_time_steps: 101
# - x: 128 to 512
# - y: 128 to 512
# - physical fields: 2 to 8 (density, pressure, energy, velocity…)
import gradio as gr
import h5py
import numpy as np
from fsspec import url_to_fs
from matplotlib import cm
from PIL import Image
import av
from tempfile import gettempdir
import os
# Get the path of the system's temporary directory
temp_directory = gettempdir()
print(f"System's temporary directory is: {temp_directory}")
videos_temp_directory = os.path.join(temp_directory, "videos")
print(f"Videos are saved (and never deleted) in: {videos_temp_directory}")
# TODO: add colormap input
repo_id = "lhoestq/turbulent_radiative_layer_tcool_demo"
set_path = f"hf://datasets/{repo_id}/**/*.hdf5"
fs, _ = url_to_fs(set_path)
paths = fs.glob(set_path)
files = {path: h5py.File(fs.open(path, "rb", cache_type="none"), "r") for path in paths}
def get_scalar_fields(path: str) -> list[str]:
# TODO: support t1_fields (vector) and t2_fields (tensor)
return list(files[path]["t0_fields"].keys())
def get_trajectories(path: str, field: str) -> list[int]:
# The first dimension is the trajectory (8 to 256)
return list(range(len(files[path]["t0_fields"][field])))
fps = 25
def create_video(
path: str, scalar_field: str, trajectory: int, video_filename: str
) -> None:
out = files[path]["t0_fields"][scalar_field][trajectory]
# out = np.log(out) # not sure why
out = (out - out.min()) / (out.max() - out.min())
out = np.uint8(cm.viridis(out) * 255)
output = av.open(video_filename, "w")
stream = output.add_stream("libvpx-vp9", str(fps))
height, width = out[0].shape[1], out[0].shape[0]
stream.width = width
stream.height = height
stream.pix_fmt = "yuv444p"
for img in out:
image = Image.fromarray(img)
# I think it's the way to get the expected orientation
image = image.transpose(method=Image.Transpose.TRANSPOSE)
image = image.transpose(method=Image.Transpose.FLIP_TOP_BOTTOM)
frame = av.VideoFrame.from_image(image)
packet = stream.encode(frame)
output.mux(packet)
# Flush the encoder and close the "in memory" file:
packet = stream.encode(None)
output.mux(packet)
output.close()
# no limit on the size of the videos on the disk
def get_video(path: str, scalar_field: str, trajectory: int) -> str:
video_filename = os.path.join(
videos_temp_directory, *path.split("/"), scalar_field, f"{trajectory}.webm"
)
os.makedirs(os.path.dirname(video_filename), exist_ok=True)
if not os.path.isfile(video_filename):
create_video(path, scalar_field, trajectory, video_filename)
return video_filename
with gr.Blocks() as demo:
default_scalar_fields = get_scalar_fields(paths[0])
default_trajectories = get_trajectories(paths[0], default_scalar_fields[0])
default_video = get_video(
paths[0], default_scalar_fields[0], default_trajectories[0]
)
gr.Markdown(
f"# 💠 HDF5 Viewer for the [{repo_id}](https://huggingface.co/datasets/{repo_id}) Dataset 🌊"
)
gr.Markdown(f"Showing files at `{set_path}`")
with gr.Row():
files_dropdown = gr.Dropdown(
choices=paths, value=paths[0], label="File", scale=4
)
scalar_fields_dropdown = gr.Dropdown(
choices=default_scalar_fields,
value=default_scalar_fields[0],
label="Physical field",
)
trajectory_dropdown = gr.Dropdown(
choices=default_trajectories,
value=default_trajectories[0],
label="Trajectory",
)
video = gr.Video(default_video, height=400, autoplay=True, loop=True)
@files_dropdown.select(
inputs=[files_dropdown],
outputs=[scalar_fields_dropdown, trajectory_dropdown, video],
)
def _update_file(path: str):
scalar_fields = get_scalar_fields(path)
trajectories = get_trajectories(path, scalar_fields[0])
vid = get_video(path, scalar_fields[0], trajectories[0])
yield {
scalar_fields_dropdown: gr.Dropdown(
choices=scalar_fields, value=scalar_fields[0]
),
trajectory_dropdown: gr.Dropdown(
choices=trajectories, value=trajectories[0]
),
video: gr.Video(vid),
}
@scalar_fields_dropdown.select(
inputs=[files_dropdown, scalar_fields_dropdown],
outputs=[trajectory_dropdown, video],
)
def _update_scalar_field(path: str, scalar_field: str):
trajectories = get_trajectories(path, scalar_field)
vid = get_video(path, scalar_field, trajectories[0])
yield {
trajectory_dropdown: gr.Dropdown(
choices=trajectories, value=trajectories[0]
),
video: gr.Video(vid),
}
@trajectory_dropdown.select(
inputs=[files_dropdown, scalar_fields_dropdown, trajectory_dropdown],
outputs=[video],
)
def _update_trajectory(path: str, scalar_field: str, trajectory: int):
vid = get_video(path, scalar_field, trajectory)
yield {video: gr.Video(vid)}
demo.launch()