seungminkwak's picture
reset: clean history (purge leaked token)
08b23ce
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pytorch3d.io import load_obj
from pytorch3d.renderer import TexturesAtlas
from pytorch3d.structures import Meshes
import os
import torch
import json
import numpy as np
from tqdm import tqdm
from pathlib import Path
import subprocess
from PIL import Image
from scipy.ndimage import gaussian_filter1d
from third_partys.co_tracker.save_track import save_track
def render_single_mesh(renderer, mesh_path, out_path="render_result.png", atlas_size=8):
"""
Test render a single mesh and save the result.
"""
device = renderer.device
verts, faces, aux = load_obj(
mesh_path,
device=device,
load_textures=True,
create_texture_atlas=True,
texture_atlas_size=atlas_size,
texture_wrap="repeat"
)
atlas = aux.texture_atlas # (F, atlas_size, atlas_size, 3)
vmin, vmax = verts.min(0).values, verts.max(0).values
center = (vmax + vmin) / 2.
scale = (vmax - vmin).max()
verts = (verts - center) / scale
mesh_norm = Meshes(
verts=[verts],
faces=[faces.verts_idx],
textures=TexturesAtlas(atlas=[atlas])
)
with torch.no_grad():
rendered = renderer.render(mesh_norm) # shape=[1, H, W, 4]
rendered_img = renderer.tensor_to_image(rendered)
pil_img = Image.fromarray(rendered_img)
pil_img.save(out_path)
print(f"Saved render to {out_path}")
def apply_gaussian_smoothing(data, sigma = 1.0, preserve_first_frame = True, eps = 1e-8):
"""
Apply Gaussian smoothing along the time axis with quaternion normalization.
"""
smoothed = gaussian_filter1d(data, sigma=sigma, axis=0)
# Preserve first frame if requested
if preserve_first_frame and data.shape[0] > 0:
smoothed[0] = data[0]
if data.shape[-1] == 4:
norms = np.linalg.norm(smoothed, axis=-1, keepdims=True)
smoothed = smoothed / np.maximum(norms, eps)
return smoothed
def render_single_view_sequence(quats, root_quats, root_pos, renderer, model, output_dir, view_name, fps = 25):
"""
Render animation sequence from a single viewpoint.
"""
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
T = quats.shape[0]
model.animate(quats, root_quats, root_pos)
for i in tqdm(range(T), desc=f"Rendering {view_name}"):
mesh = model.get_mesh(i)
rendered = renderer.render(mesh)
img_array = renderer.tensor_to_image(rendered)
img = Image.fromarray(img_array)
frame_path = output_dir / f"{view_name}_frame_{i:04d}.png"
img.save(frame_path)
# Create video
video_path = output_dir / f"{view_name}_output_video.mp4"
cmd = f"ffmpeg -y -framerate {fps} -i {output_dir}/{view_name}_frame_%04d.png -c:v libx264 -pix_fmt yuv420p {video_path}"
subprocess.call(cmd, shell=True)
def save_and_smooth_results(args, model, renderer, final_quats, root_quats, root_pos, out_dir, additional_renderers = None, load_pt = False, sigma = 1.0, fps = 25):
"""
Save and smooth animation results with multi-view rendering.
"""
device = final_quats.device
T = final_quats.shape[0]
# Save Raw Results
if not load_pt:
raw_dir = os.path.join(out_dir, "raw")
os.makedirs(raw_dir, exist_ok=True)
torch.save(final_quats, os.path.join(raw_dir, "local_quats.pt"))
torch.save(root_quats, os.path.join(raw_dir, "root_quats.pt"))
torch.save(root_pos, os.path.join(raw_dir, "root_pos.pt"))
if hasattr(model, 'rest_local_positions'):
torch.save(model.rest_local_positions, os.path.join(raw_dir, "rest_local_positions.pt"))
print(f"Saved raw motion to {raw_dir}")
quats_np = final_quats.cpu().numpy()
root_quats_np = root_quats.cpu().numpy()
root_pos_np = root_pos.cpu().numpy()
# Apply Gaussian smoothing if enabled
if args.gauss_filter:
print(f"Applying Gaussian smoothing (sigma={sigma})")
smooth_quats_np = apply_gaussian_smoothing(
quats_np, sigma=sigma, preserve_first_frame=True
)
smooth_root_quats_np = apply_gaussian_smoothing(
root_quats_np, sigma=sigma, preserve_first_frame=True
)
smooth_root_pos_np = apply_gaussian_smoothing(
root_pos_np, sigma=sigma, preserve_first_frame=True
)
smooth_dir = os.path.join(out_dir, "smoothed")
os.makedirs(smooth_dir, exist_ok=True)
save_dir = smooth_dir
else:
smooth_quats_np = quats_np
smooth_root_quats_np = root_quats_np
smooth_root_pos_np = root_pos_np
save_dir = raw_dir
smooth_quats = torch.tensor(smooth_quats_np, dtype=torch.float32, device=device)
smooth_root_quats = torch.tensor(smooth_root_quats_np, dtype=torch.float32, device=device)
smooth_root_pos = torch.tensor(smooth_root_pos_np, dtype=torch.float32, device=device)
# Render Sequences
if not load_pt and args.gauss_filter:
smooth_dir_path = Path(smooth_dir)
torch.save(smooth_quats, smooth_dir_path / "local_quats.pt")
torch.save(smooth_root_quats, smooth_dir_path / "root_quats.pt")
torch.save(smooth_root_pos, smooth_dir_path / "root_pos.pt")
print(f"Saved smoothed motion to {smooth_dir}")
# Render main view
print(f"Rendering {args.main_renderer} view ({T} frames)")
render_single_view_sequence(
smooth_quats, smooth_root_quats, smooth_root_pos,
renderer, model, save_dir, args.main_renderer, fps
)
# Render additional views if provided
if additional_renderers:
for renderer_key, view_renderer in additional_renderers.items():
view_name = renderer_key.replace("_renderer", "")
render_single_view_sequence(
smooth_quats, smooth_root_quats, smooth_root_pos,
view_renderer, model, save_dir, view_name, fps
)
def save_args(args, output_dir, filename="config.json"):
args_dict = vars(args)
os.makedirs(output_dir, exist_ok=True)
config_path = os.path.join(output_dir, filename)
with open(config_path, 'w') as f:
json.dump(args_dict, f, indent=4)
def visualize_joints_on_mesh(model, renderer, seq_name, out_dir):
"""
Render mesh with joint visualizations and return visibility mask.
"""
joints_2d = renderer.project_points(model.joints_rest)
mesh = model.get_mesh()
image_with_joints, vis_mask = renderer.render_with_points(mesh, model.joints_rest)
image_np = image_with_joints[0].cpu().numpy()
if image_np.shape[2] == 4:
image_rgb = image_np[..., :3]
else:
image_rgb = image_np
if image_rgb.max() <= 1.0:
image_rgb = (image_rgb * 255).astype(np.uint8)
img = Image.fromarray(image_rgb)
output_path = f"{out_dir}/mesh_with_joints_{seq_name}_visible.png"
img.save(output_path)
return vis_mask
def visualize_points_on_mesh(model, renderer, seq_name, out_dir):
"""
Render mesh with point visualizations and return visibility mask.
"""
points_2d = renderer.project_points(model.vertices[0])
mesh = model.get_mesh()
image_with_points, vis_mask = renderer.render_with_points(mesh, model.vertices[0], for_vertices=True)
image_np = image_with_points[0].cpu().numpy()
if image_np.shape[2] == 4:
image_rgb = image_np[..., :3]
else:
image_rgb = image_np
if image_rgb.max() <= 1.0:
image_rgb = (image_rgb * 255).astype(np.uint8)
img = Image.fromarray(image_rgb)
output_path = f"{out_dir}/mesh_with_verts_{seq_name}_visible.png"
img.save(output_path)
return vis_mask
def save_track_points(point_vis_mask, renderer, model, img_path, out_dir, args):
"""
Save and track selected points on the mesh with intelligent sampling.
"""
vertex_project_2d = renderer.project_points(model.vertices[0])
visible_indices = torch.where(point_vis_mask)[0]
track_2d_point_path = img_path.replace('imgs', 'track_2d_verts')
os.makedirs(track_2d_point_path, exist_ok=True)
num_visible = len(visible_indices)
MAX_VISIBLE_POINTS = 15000
MAX_SAMPLE_POINTS = 4000
# Determine tracking strategy
tracking_mode = "full" if num_visible <= MAX_VISIBLE_POINTS else "sampled"
if not os.listdir(track_2d_point_path):
# Generate new tracking data
if tracking_mode == "full":
print(f"Saving tracks for all visible vertices (count: {num_visible})")
# Track all visible points
visible_vertex_project_2d = vertex_project_2d[visible_indices]
track_2d_point = save_track(
args.seq_name, visible_vertex_project_2d, img_path,
track_2d_point_path, out_dir, for_point=True
)
np.save(f'{track_2d_point_path}/visible_indices.npy',
visible_indices.cpu().numpy())
# Sample subset for final use
num_sample = min(MAX_SAMPLE_POINTS, num_visible)
sampled_local_indices = torch.randperm(num_visible)[:num_sample]
sampled_vertex_indices = visible_indices[sampled_local_indices]
np.save(f'{track_2d_point_path}/sampled_indices.npy',
sampled_vertex_indices.cpu().numpy())
else:
print(f"Too many visible vertices ({num_visible} > {MAX_VISIBLE_POINTS}), "
f"tracking only {MAX_SAMPLE_POINTS} sampled vertices")
# Sample points directly from visible set
num_sample = min(MAX_SAMPLE_POINTS, num_visible)
sampled_local_indices = torch.randperm(num_visible)[:num_sample]
sampled_vertex_indices = visible_indices[sampled_local_indices]
# Track only sampled points
sampled_vertex_project_2d = vertex_project_2d[sampled_vertex_indices]
track_2d_point = save_track(
args.seq_name, sampled_vertex_project_2d, img_path,
track_2d_point_path, out_dir, for_point=True
)
np.save(f'{track_2d_point_path}/visible_indices.npy',
visible_indices.cpu().numpy())
np.save(f'{track_2d_point_path}/sampled_indices.npy',
sampled_vertex_indices.cpu().numpy())
else:
# Load existing tracking data
print("Loading existing vertex tracks")
track_2d_point = np.load(f'{track_2d_point_path}/pred_tracks.npy')
visible_indices = np.load(f'{track_2d_point_path}/visible_indices.npy')
visible_indices = torch.from_numpy(visible_indices).long().to(args.device)
sampled_vertex_indices = np.load(f'{track_2d_point_path}/sampled_indices.npy')
sampled_vertex_indices = torch.from_numpy(sampled_vertex_indices).long().to(args.device)
track_2d_point = torch.from_numpy(track_2d_point).float().to(args.device)
# Create index mapping for tracking data
if tracking_mode == "full":
# Map from original vertex indices to positions in tracking data
vertex_to_track_idx = {idx.item(): i for i, idx in enumerate(visible_indices)}
track_indices = torch.tensor(
[vertex_to_track_idx[idx.item()] for idx in sampled_vertex_indices],
device=args.device, dtype=torch.long
)
else:
# Direct mapping for sampled-only tracking
track_indices = torch.arange(len(sampled_vertex_indices),
device=args.device, dtype=torch.long)
return track_2d_point, track_indices, sampled_vertex_indices
def save_final_video(args):
additional_views = [view.strip() for view in args.additional_renderers.split(',') if view.strip()]
if len(additional_views) > 3:
additional_views = additional_views[:3]
additional_views = [view for view in additional_views if view != args.main_renderer]
save_dir = 'raw' if not args.gauss_filter else 'smoothed'
import subprocess
cmd = (
f'ffmpeg '
f'-i {args.input_path}/{args.seq_name}/input.mp4 '
f'-i {args.save_path}/{args.seq_name}/{args.save_name}/{save_dir}/{args.main_renderer}_output_video.mp4 '
'-filter_complex "'
'[0:v][1:v]hstack=inputs=2[stacked]; '
'[stacked]drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'gt\':x=(w/4-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10, '
f'drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'ours\':x=(3*w/4-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10" '
f'-c:a copy {args.save_path}/{args.seq_name}/{args.save_name}/concat_output.mp4'
)
subprocess.call(cmd, shell=True)
cmd = (
f'ffmpeg '
f'-i {args.input_path}/{args.seq_name}/input.mp4 '
f'-i {args.save_path}/{args.seq_name}/{args.save_name}/{save_dir}/{args.main_renderer}_output_video.mp4 '
f'-i {args.save_path}/{args.seq_name}/{args.save_name}/{save_dir}/{additional_views[0]}_output_video.mp4 '
f'-i {args.save_path}/{args.seq_name}/{args.save_name}/{save_dir}/{additional_views[1]}_output_video.mp4 '
f'-i {args.save_path}/{args.seq_name}/{args.save_name}/{save_dir}/{additional_views[2]}_output_video.mp4 '
'-filter_complex "'
'[0:v][1:v][2:v][3:v][4:v]hstack=inputs=5[stacked]; '
'[stacked]drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'gt\':x=(w/10-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10, '
f'drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'{args.main_renderer}\':x=(3*w/10-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10, '
f'drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'{additional_views[0]}\':x=(5*w/10-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10, '
f'drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'{additional_views[1]}\':x=(7*w/10-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10, '
f'drawtext=fontfile=/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf:text=\'{additional_views[2]}\':x=(9*w/10-text_w/2):y=20:fontsize=24:fontcolor=white:box=1:boxcolor=black:boxborderw=10" '
f'-c:a copy {args.save_path}/{args.seq_name}/{args.save_name}/concat_output_4view.mp4'
)
subprocess.call(cmd, shell=True)
def load_motion_data(motion_dir, device="cuda:0"):
"""
Load saved motion data.
"""
local_quats = torch.load(os.path.join(motion_dir, "local_quats.pt"), map_location=device)
root_quats = torch.load(os.path.join(motion_dir, "root_quats.pt"), map_location=device)
root_pos = torch.load(os.path.join(motion_dir, "root_pos.pt"), map_location=device)
# Load rest positions if available (for reference)
rest_pos_path = os.path.join(motion_dir, "rest_local_positions.pt")
if os.path.exists(rest_pos_path):
rest_positions = torch.load(rest_pos_path, map_location=device)
else:
rest_positions = None
print("Warning: rest_local_positions.pt not found, model should have them initialized")
return local_quats, root_quats, root_pos, rest_positions