service-internal commited on
Commit
b053f3d
·
verified ·
1 Parent(s): a2004de

Upload main.py

Browse files
Files changed (1) hide show
  1. main.py +50 -44
main.py CHANGED
@@ -1,44 +1,50 @@
1
- from fastapi import FastAPI, Request
2
- from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
3
- from scipy.special import softmax
4
- import numpy as np
5
- import uvicorn
6
-
7
- app = FastAPI()
8
-
9
- # Load model and tokenizer
10
- MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
11
- tokenizer = AutoTokenizer.from_pretrained(MODEL)
12
- config = AutoConfig.from_pretrained(MODEL)
13
- model = AutoModelForSequenceClassification.from_pretrained(MODEL)
14
-
15
- # Preprocessing function
16
- def preprocess(text):
17
- tokens = []
18
- for t in text.split():
19
- if t.startswith("@") and len(t) > 1:
20
- t = "@user"
21
- elif t.startswith("http"):
22
- t = "http"
23
- tokens.append(t)
24
- return " ".join(tokens)
25
-
26
- # Inference route
27
- @app.post("/analyze")
28
- async def analyze(request: Request):
29
- data = await request.json()
30
- text = preprocess(data.get("text", ""))
31
-
32
- encoded_input = tokenizer(text, return_tensors='pt')
33
- output = model(**encoded_input)
34
- scores = output[0][0].detach().numpy()
35
- scores = softmax(scores)
36
-
37
- ranking = np.argsort(scores)[::-1]
38
- result = []
39
- for i in ranking:
40
- label = config.id2label[i]
41
- score = round(float(scores[i]), 4)
42
- result.append({"label": label, "score": score})
43
-
44
- return {"result": result}
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, Request
2
+ from transformers import AutoModelForSequenceClassification, AutoConfig, RobertaTokenizer
3
+ from scipy.special import softmax
4
+ import numpy as np
5
+ import os
6
+
7
+ app = FastAPI()
8
+
9
+ # Set HF cache and home directory to writable path
10
+ os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
11
+ os.environ["HF_HOME"] = "/tmp/hf-home"
12
+
13
+ # Model and tokenizer setup
14
+ MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
15
+ TOKENIZER_MODEL = "cardiffnlp/twitter-roberta-base-sentiment"
16
+
17
+ tokenizer = RobertaTokenizer.from_pretrained(TOKENIZER_MODEL)
18
+ config = AutoConfig.from_pretrained(MODEL)
19
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL)
20
+
21
+ # Preprocessing
22
+ def preprocess(text):
23
+ tokens = []
24
+ for t in text.split():
25
+ if t.startswith("@") and len(t) > 1:
26
+ t = "@user"
27
+ elif t.startswith("http"):
28
+ t = "http"
29
+ tokens.append(t)
30
+ return " ".join(tokens)
31
+
32
+ # Endpoint
33
+ @app.post("/analyze")
34
+ async def analyze(request: Request):
35
+ data = await request.json()
36
+ text = preprocess(data.get("text", ""))
37
+
38
+ encoded_input = tokenizer(text, return_tensors='pt')
39
+ output = model(**encoded_input)
40
+ scores = output[0][0].detach().numpy()
41
+ scores = softmax(scores)
42
+
43
+ ranking = np.argsort(scores)[::-1]
44
+ result = []
45
+ for i in ranking:
46
+ label = config.id2label[i]
47
+ score = round(float(scores[i]), 4)
48
+ result.append({"label": label, "score": score})
49
+
50
+ return {"result": result}