serhii-korobchenko commited on
Commit
0fecf04
1 Parent(s): c1a178d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -9
app.py CHANGED
@@ -30,13 +30,12 @@ def download_model_NLP():
30
  sequence_length=128,)
31
  model = keras_nlp.models.GPT2CausalLM.from_preset(
32
  "gpt2_base_en", preprocessor=preprocessor)
33
- return model
34
-
35
 
36
- #url = "https://drive.google.com/uc?id=1zUGAPg9RVgo7bWtf_-L9MXoXKldZjs1y"
37
- #output = "CIFAR10_Xception_(ACC_0.9704__LOSS_0.0335_).h5"
38
- #gdown.download(url, output, quiet=False)
39
- #return output
 
40
 
41
 
42
 
@@ -86,20 +85,23 @@ def predict_class(image):
86
  def classify_image(image):
87
  results = predict_class(image)
88
  output = {labels.get(i): float(results[i]) for i in range(len(results))}
89
- return output
 
90
 
91
 
92
  inputs = gr.inputs.Image(type="pil", label="Upload an image")
93
  # outputs = gr.outputs.HTML() #uncomment for single class output
94
- outputs = gr.outputs.Label(num_top_classes=4)
95
 
96
  title = "<h1 style='text-align: center;'>Image Classifier</h1>"
97
  description = "Upload an image and get the predicted class."
98
  # css_code='body{background-image:url("file=wave.mp4");}'
99
 
 
 
100
  gr.Interface(fn=classify_image,
101
  inputs=inputs,
102
- outputs=outputs,
103
  title=title,
104
  examples=[["00_plane.jpg"], ["01_car.jpg"], ["02_bird.jpg"], ["03_cat.jpg"], ["04_deer.jpg"]],
105
  # css=css_code,
 
30
  sequence_length=128,)
31
  model = keras_nlp.models.GPT2CausalLM.from_preset(
32
  "gpt2_base_en", preprocessor=preprocessor)
 
 
33
 
34
+ output = "total.h5"
35
+ id = "1-KgcnP1ayWQ6l2-4h723JCYPoWxzOnU3"
36
+ gdown.download(id=id, output=output, quiet=False)
37
+ model.load_weights(output)
38
+ return model
39
 
40
 
41
 
 
85
  def classify_image(image):
86
  results = predict_class(image)
87
  output = {labels.get(i): float(results[i]) for i in range(len(results))}
88
+ result_NLP = model.generate("Deer is able to", max_length=100)
89
+ return output, result_NLP
90
 
91
 
92
  inputs = gr.inputs.Image(type="pil", label="Upload an image")
93
  # outputs = gr.outputs.HTML() #uncomment for single class output
94
+ output_1 = gr.outputs.Label(num_top_classes=4)
95
 
96
  title = "<h1 style='text-align: center;'>Image Classifier</h1>"
97
  description = "Upload an image and get the predicted class."
98
  # css_code='body{background-image:url("file=wave.mp4");}'
99
 
100
+ model_NLP = download_model_NLP()
101
+
102
  gr.Interface(fn=classify_image,
103
  inputs=inputs,
104
+ outputs=[output_1, "text"],
105
  title=title,
106
  examples=[["00_plane.jpg"], ["01_car.jpg"], ["02_bird.jpg"], ["03_cat.jpg"], ["04_deer.jpg"]],
107
  # css=css_code,