Spaces:
Sleeping
Sleeping
Serhan Yılmaz
commited on
Commit
·
800222f
1
Parent(s):
c1fa8ac
update app
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ from sentence_transformers import SentenceTransformer
|
|
4 |
from transformers import pipeline
|
5 |
from typing import List, Tuple
|
6 |
import os
|
7 |
-
from dotenv import load_dotenv
|
8 |
import logging
|
9 |
import json
|
10 |
import gradio as gr
|
@@ -14,13 +13,27 @@ import pandas as pd
|
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
-
load_dotenv() # This loads the variables from .env
|
18 |
-
|
19 |
# Initialize Cohere client, SentenceTransformer model, and QA pipeline
|
20 |
-
co = cohere.Client(api_key
|
21 |
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
22 |
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def generate_questions(context: str, answer: str) -> List[str]:
|
25 |
try:
|
26 |
response = co.chat(
|
@@ -93,7 +106,13 @@ def check_answer_precision(context: str, questions: List[str], original_answer:
|
|
93 |
return precision_scores, generated_answers
|
94 |
|
95 |
def calculate_composite_scores(sd_scores: List[float], sr_scores: List[float], ap_scores: List[float]) -> List[float]:
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
def rank_questions_with_details(context: str, answer: str) -> Tuple[pd.DataFrame, List[pd.DataFrame], str]:
|
99 |
questions = generate_questions(context, answer)
|
@@ -107,16 +126,16 @@ def rank_questions_with_details(context: str, answer: str) -> Tuple[pd.DataFrame
|
|
107 |
# Create detailed scores dataframe
|
108 |
detailed_scores = pd.DataFrame({
|
109 |
'Question': questions,
|
|
|
110 |
'Composite Score': composite_scores,
|
111 |
'Structural Diversity': sd_scores,
|
112 |
'Semantic Relevance': sr_scores,
|
113 |
-
'Answer Precision': ap_scores,
|
114 |
'Generated Answer': generated_answers
|
115 |
})
|
116 |
-
detailed_scores = detailed_scores.sort_values('
|
117 |
|
118 |
# Create separate ranking dataframes for each metric
|
119 |
-
metrics = ['Composite Score', 'Structural Diversity', 'Semantic Relevance'
|
120 |
rankings = []
|
121 |
|
122 |
for metric in metrics:
|
@@ -125,36 +144,22 @@ def rank_questions_with_details(context: str, answer: str) -> Tuple[pd.DataFrame
|
|
125 |
'Question': [questions[i] for i in np.argsort(detailed_scores[metric])[::-1]],
|
126 |
f'{metric}': sorted(detailed_scores[metric], reverse=True)
|
127 |
})
|
|
|
|
|
128 |
rankings.append(df)
|
129 |
|
130 |
best_question = detailed_scores.iloc[0]['Question']
|
131 |
|
132 |
return detailed_scores, rankings, best_question
|
133 |
|
134 |
-
# Define sample inputs
|
135 |
-
samples = [
|
136 |
-
{
|
137 |
-
"context": "Albert Einstein is an Austrian scientist, who has completed his higher education in ETH Zurich in Zurich, Switzerland. He was later a faculty at Princeton University.",
|
138 |
-
"answer": "Switzerland"
|
139 |
-
},
|
140 |
-
{
|
141 |
-
"context": "The Eiffel Tower, located in Paris, France, is one of the most famous landmarks in the world. It was constructed in 1889 as the entrance arch to the 1889 World's Fair. The tower is 324 meters (1,063 ft) tall and is the tallest structure in Paris.",
|
142 |
-
"answer": "Paris"
|
143 |
-
},
|
144 |
-
{
|
145 |
-
"context": "The Great Wall of China is a series of fortifications and walls built across the historical northern borders of ancient Chinese states and Imperial China to protect against nomadic invasions. It is the largest man-made structure in the world, with a total length of more than 13,000 miles (21,000 kilometers).",
|
146 |
-
"answer": "China"
|
147 |
-
}
|
148 |
-
]
|
149 |
-
|
150 |
def gradio_interface(context: str, answer: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, str]:
|
151 |
detailed_scores, rankings, best_question = rank_questions_with_details(context, answer)
|
152 |
return (
|
153 |
detailed_scores,
|
154 |
-
rankings[0], #
|
155 |
-
rankings[1], #
|
156 |
-
rankings[2], #
|
157 |
-
rankings[3], #
|
158 |
f"Best Question: {best_question}"
|
159 |
)
|
160 |
|
@@ -181,25 +186,25 @@ with gr.Blocks(theme=gr.themes.Default()) as iface:
|
|
181 |
|
182 |
with gr.Row():
|
183 |
with gr.Column():
|
184 |
-
|
185 |
with gr.Column():
|
186 |
-
|
187 |
|
188 |
with gr.Row():
|
189 |
with gr.Column():
|
190 |
-
|
191 |
with gr.Column():
|
192 |
-
|
193 |
|
194 |
submit_button.click(
|
195 |
fn=gradio_interface,
|
196 |
inputs=[context_input, answer_input],
|
197 |
outputs=[
|
198 |
detailed_scores_output,
|
|
|
199 |
composite_ranking_output,
|
200 |
structural_diversity_ranking_output,
|
201 |
semantic_relevance_ranking_output,
|
202 |
-
answer_precision_ranking_output,
|
203 |
best_question_output
|
204 |
]
|
205 |
)
|
@@ -211,5 +216,5 @@ with gr.Blocks(theme=gr.themes.Default()) as iface:
|
|
211 |
outputs=[context_input, answer_input]
|
212 |
)
|
213 |
|
214 |
-
|
215 |
iface.launch()
|
|
|
4 |
from transformers import pipeline
|
5 |
from typing import List, Tuple
|
6 |
import os
|
|
|
7 |
import logging
|
8 |
import json
|
9 |
import gradio as gr
|
|
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
|
|
|
|
16 |
# Initialize Cohere client, SentenceTransformer model, and QA pipeline
|
17 |
+
co = cohere.Client(api_key=os.environ.get("COHERE_API_KEY"))
|
18 |
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
19 |
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
20 |
|
21 |
+
# Define sample inputs
|
22 |
+
samples = [
|
23 |
+
{
|
24 |
+
"context": "Albert Einstein is an Austrian scientist, who has completed his higher education in ETH Zurich in Zurich, Switzerland. He was later a faculty at Princeton University.",
|
25 |
+
"answer": "Switzerland"
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"context": "The Eiffel Tower, located in Paris, France, is one of the most famous landmarks in the world. It was constructed in 1889 as the entrance arch to the 1889 World's Fair. The tower is 324 meters (1,063 ft) tall and is the tallest structure in Paris.",
|
29 |
+
"answer": "Paris"
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"context": "The Great Wall of China is a series of fortifications and walls built across the historical northern borders of ancient Chinese states and Imperial China to protect against nomadic invasions. It is the largest man-made structure in the world, with a total length of more than 13,000 miles (21,000 kilometers).",
|
33 |
+
"answer": "China"
|
34 |
+
}
|
35 |
+
]
|
36 |
+
|
37 |
def generate_questions(context: str, answer: str) -> List[str]:
|
38 |
try:
|
39 |
response = co.chat(
|
|
|
106 |
return precision_scores, generated_answers
|
107 |
|
108 |
def calculate_composite_scores(sd_scores: List[float], sr_scores: List[float], ap_scores: List[float]) -> List[float]:
|
109 |
+
# Normalize other scores based on answer precision
|
110 |
+
max_other_score = max(max(sd_scores), max(sr_scores))
|
111 |
+
normalized_sd_scores = [sd * (ap / max_other_score) for sd, ap in zip(sd_scores, ap_scores)]
|
112 |
+
normalized_sr_scores = [sr * (ap / max_other_score) for sr, ap in zip(sr_scores, ap_scores)]
|
113 |
+
|
114 |
+
# Calculate composite scores with higher weight for answer precision
|
115 |
+
return [0.6 * ap + 0.2 * sd + 0.2 * sr for ap, sd, sr in zip(ap_scores, normalized_sd_scores, normalized_sr_scores)]
|
116 |
|
117 |
def rank_questions_with_details(context: str, answer: str) -> Tuple[pd.DataFrame, List[pd.DataFrame], str]:
|
118 |
questions = generate_questions(context, answer)
|
|
|
126 |
# Create detailed scores dataframe
|
127 |
detailed_scores = pd.DataFrame({
|
128 |
'Question': questions,
|
129 |
+
'Answer Precision': ap_scores,
|
130 |
'Composite Score': composite_scores,
|
131 |
'Structural Diversity': sd_scores,
|
132 |
'Semantic Relevance': sr_scores,
|
|
|
133 |
'Generated Answer': generated_answers
|
134 |
})
|
135 |
+
detailed_scores = detailed_scores.sort_values('Answer Precision', ascending=False).reset_index(drop=True)
|
136 |
|
137 |
# Create separate ranking dataframes for each metric
|
138 |
+
metrics = ['Answer Precision', 'Composite Score', 'Structural Diversity', 'Semantic Relevance']
|
139 |
rankings = []
|
140 |
|
141 |
for metric in metrics:
|
|
|
144 |
'Question': [questions[i] for i in np.argsort(detailed_scores[metric])[::-1]],
|
145 |
f'{metric}': sorted(detailed_scores[metric], reverse=True)
|
146 |
})
|
147 |
+
if metric == 'Answer Precision':
|
148 |
+
df['Generated Answer'] = [generated_answers[i] for i in np.argsort(detailed_scores[metric])[::-1]]
|
149 |
rankings.append(df)
|
150 |
|
151 |
best_question = detailed_scores.iloc[0]['Question']
|
152 |
|
153 |
return detailed_scores, rankings, best_question
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
def gradio_interface(context: str, answer: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, str]:
|
156 |
detailed_scores, rankings, best_question = rank_questions_with_details(context, answer)
|
157 |
return (
|
158 |
detailed_scores,
|
159 |
+
rankings[0], # Answer Precision Ranking
|
160 |
+
rankings[1], # Composite Score Ranking
|
161 |
+
rankings[2], # Structural Diversity Ranking
|
162 |
+
rankings[3], # Semantic Relevance Ranking
|
163 |
f"Best Question: {best_question}"
|
164 |
)
|
165 |
|
|
|
186 |
|
187 |
with gr.Row():
|
188 |
with gr.Column():
|
189 |
+
answer_precision_ranking_output = gr.DataFrame(label="Answer Precision Ranking")
|
190 |
with gr.Column():
|
191 |
+
composite_ranking_output = gr.DataFrame(label="Composite Score Ranking")
|
192 |
|
193 |
with gr.Row():
|
194 |
with gr.Column():
|
195 |
+
structural_diversity_ranking_output = gr.DataFrame(label="Structural Diversity Ranking")
|
196 |
with gr.Column():
|
197 |
+
semantic_relevance_ranking_output = gr.DataFrame(label="Semantic Relevance Ranking")
|
198 |
|
199 |
submit_button.click(
|
200 |
fn=gradio_interface,
|
201 |
inputs=[context_input, answer_input],
|
202 |
outputs=[
|
203 |
detailed_scores_output,
|
204 |
+
answer_precision_ranking_output,
|
205 |
composite_ranking_output,
|
206 |
structural_diversity_ranking_output,
|
207 |
semantic_relevance_ranking_output,
|
|
|
208 |
best_question_output
|
209 |
]
|
210 |
)
|
|
|
216 |
outputs=[context_input, answer_input]
|
217 |
)
|
218 |
|
219 |
+
# Launch the app
|
220 |
iface.launch()
|