Spaces:
Running
Running
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the BSD-style license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| """ | |
| REPL Environment Implementation. | |
| A Python REPL environment for training language models on code execution tasks, | |
| based on the Recursive Language Models (RLM) paradigm. | |
| References: | |
| - RLM Paper: https://arxiv.org/abs/2512.24601 | |
| - Prime Intellect Blog: https://www.primeintellect.ai/blog/rlm | |
| - Alex Zhang Blog: https://alexzhang13.github.io/blog/2025/rlm/ | |
| """ | |
| import os | |
| import re | |
| from collections.abc import Callable | |
| from typing import Any, Dict, List, Optional | |
| from uuid import uuid4 | |
| # Support both in-repo and standalone imports | |
| try: | |
| from openenv.core.env_server.interfaces import Environment | |
| from openenv.core.env_server.types import EnvironmentMetadata | |
| except ImportError: | |
| from openenv.core.env_server.interfaces import Environment | |
| from openenv.core.env_server.types import EnvironmentMetadata | |
| try: | |
| from ..models import REPLAction, REPLObservation, REPLState, CodeBlockResult | |
| except ImportError: | |
| from models import REPLAction, REPLObservation, REPLState, CodeBlockResult | |
| try: | |
| from .python_executor import PythonExecutor | |
| except ImportError: | |
| from python_executor import PythonExecutor | |
| class REPLEnvironment(Environment): | |
| """ | |
| A REPL environment for training language models to use code execution. | |
| Based on the Recursive Language Models (RLM) paradigm, this environment allows | |
| language models to: | |
| - Execute Python code in a sandboxed REPL | |
| - Work with large contexts loaded as variables | |
| - Finalize answers via FINAL(), FINAL_VAR(), or answer dict pattern | |
| - Optionally make recursive LLM calls via llm_query() / llm_query_batched() | |
| Supports two finalization patterns: | |
| 1. RLM-style: print('FINAL(answer)') or print('FINAL_VAR(var_name)') | |
| 2. Prime Intellect style: answer = {"content": "...", "ready": True} | |
| Example: | |
| >>> env = REPLEnvironment(context="Hello World", task_prompt="Count chars") | |
| >>> obs = env.reset() | |
| >>> print(obs.context_preview) # "Hello World" | |
| >>> | |
| >>> obs = env.step(REPLAction(code="result = len(context)")) | |
| >>> print(obs.result.success) # True | |
| >>> print(obs.available_variables) # ["context", "result", "answer"] | |
| >>> | |
| >>> obs = env.step(REPLAction(code="print(f'FINAL({result})')")) | |
| >>> print(obs.done) # True | |
| >>> print(obs.metadata["final_answer"]) # "11" | |
| """ | |
| SUPPORTS_CONCURRENT_SESSIONS = True | |
| def __init__( | |
| self, | |
| context: Optional[str] = None, | |
| task_prompt: Optional[str] = None, | |
| max_iterations: int = 30, | |
| max_output_length: int = 8192, | |
| context_preview_length: int = 500, | |
| reward_on_success: float = 1.0, | |
| reward_on_iteration: float = 0.0, | |
| reward_on_failure: float = -0.1, | |
| reward_on_error: float = -0.05, | |
| llm_query_fn: Optional[Callable[[str], str]] = None, | |
| llm_batch_fn: Optional[Callable[[List[str]], List[str]]] = None, | |
| ): | |
| """Initialize the REPL environment. | |
| Args: | |
| context: Initial context to load (can also be set via REPL_CONTEXT env var) | |
| task_prompt: Task description (can also be set via REPL_TASK_PROMPT env var) | |
| max_iterations: Maximum steps per episode (default 30, env var REPL_MAX_ITERATIONS) | |
| max_output_length: Max chars for stdout/stderr per turn (default 8192) | |
| context_preview_length: Chars to show in context preview (default 500) | |
| reward_on_success: Reward when final answer is submitted (default 1.0) | |
| reward_on_iteration: Reward per iteration step (default 0.0) | |
| reward_on_failure: Reward when max iterations reached (default -0.1) | |
| reward_on_error: Reward when code execution fails (default -0.05) | |
| llm_query_fn: Optional function for llm_query() support | |
| llm_batch_fn: Optional function for llm_query_batched() support | |
| """ | |
| self.initial_context = context or os.environ.get("REPL_CONTEXT", "") | |
| self.initial_task_prompt = task_prompt or os.environ.get( | |
| "REPL_TASK_PROMPT", "" | |
| ) | |
| self.max_iterations = int( | |
| os.environ.get("REPL_MAX_ITERATIONS", max_iterations) | |
| ) | |
| self.max_output_length = max_output_length | |
| self.context_preview_length = context_preview_length | |
| # Reward configuration | |
| self.reward_on_success = reward_on_success | |
| self.reward_on_iteration = reward_on_iteration | |
| self.reward_on_failure = reward_on_failure | |
| self.reward_on_error = reward_on_error | |
| # Optional LLM functions for recursive calls | |
| self.llm_query_fn = llm_query_fn | |
| self.llm_batch_fn = llm_batch_fn | |
| # State (initialized on reset) | |
| self._state: Optional[REPLState] = None | |
| self._executor: Optional[PythonExecutor] = None | |
| def _create_llm_functions( | |
| self, | |
| hf_token: str, | |
| llm_model: Optional[str] = None, | |
| ) -> None: | |
| """Create LLM functions dynamically using client-provided token. | |
| This allows clients to use their own HF token instead of the server's. | |
| Security: The token is used only to initialize the InferenceClient | |
| and is NOT stored in state, logged, or persisted anywhere. | |
| Args: | |
| hf_token: HuggingFace API token (not logged or persisted) | |
| llm_model: Model to use (default: Qwen/Qwen3-Coder-480B-A35B-Instruct) | |
| """ | |
| from concurrent.futures import ThreadPoolExecutor, as_completed | |
| try: | |
| from huggingface_hub import InferenceClient | |
| except ImportError: | |
| # huggingface_hub not installed, skip LLM functions | |
| return | |
| model = llm_model or os.environ.get( | |
| "LLM_MODEL", "Qwen/Qwen3-Coder-480B-A35B-Instruct" | |
| ) | |
| client = InferenceClient(model=model, token=hf_token) | |
| def llm_query(prompt: str) -> str: | |
| """Query the LLM with a prompt and return the response.""" | |
| try: | |
| messages = [{"role": "user", "content": prompt}] | |
| response = client.chat_completion( | |
| messages=messages, | |
| max_tokens=2048, | |
| temperature=0.7, | |
| ) | |
| return response.choices[0].message.content or "" | |
| except Exception as e: | |
| return f"Error calling LLM: {e}" | |
| def llm_query_batched(prompts: List[str]) -> List[str]: | |
| """Query the LLM with multiple prompts in parallel.""" | |
| if not prompts: | |
| return [] | |
| max_workers = min(len(prompts), 8) | |
| results: List[str] = [""] * len(prompts) | |
| with ThreadPoolExecutor(max_workers=max_workers) as executor: | |
| future_to_idx = { | |
| executor.submit(llm_query, prompt): idx | |
| for idx, prompt in enumerate(prompts) | |
| } | |
| for future in as_completed(future_to_idx): | |
| idx = future_to_idx[future] | |
| try: | |
| results[idx] = future.result() | |
| except Exception as e: | |
| results[idx] = f"Error: {e}" | |
| return results | |
| self.llm_query_fn = llm_query | |
| self.llm_batch_fn = llm_query_batched | |
| def reset( | |
| self, | |
| seed: Optional[int] = None, | |
| episode_id: Optional[str] = None, | |
| context: Optional[str] = None, | |
| task_prompt: Optional[str] = None, | |
| hf_token: Optional[str] = None, | |
| llm_model: Optional[str] = None, | |
| **kwargs: Any, | |
| ) -> REPLObservation: | |
| """Reset the environment with optional new context. | |
| Args: | |
| seed: Optional random seed (for reproducibility) | |
| episode_id: Optional episode identifier (if not provided, one is generated) | |
| context: Context to load (overrides initial_context) | |
| task_prompt: Task description (overrides initial_task_prompt) | |
| hf_token: Optional HuggingFace token for llm_query/llm_query_batched. | |
| If provided, creates LLM functions using this token. | |
| Security: Token is NOT stored in state or logged. | |
| llm_model: Optional model name for LLM functions (default: from env or Qwen3-Coder) | |
| **kwargs: Additional reset parameters | |
| Returns: | |
| Initial REPLObservation with environment ready message | |
| """ | |
| effective_context = context or self.initial_context | |
| effective_task_prompt = task_prompt or self.initial_task_prompt | |
| # Create LLM functions if not already provided at init | |
| # Priority: client hf_token > server HF_TOKEN env var | |
| if not self.llm_query_fn: | |
| effective_token = hf_token or os.environ.get("HF_TOKEN") | |
| if effective_token: | |
| self._create_llm_functions(effective_token, llm_model) | |
| # Initialize state | |
| self._state = REPLState( | |
| episode_id=episode_id or str(uuid4()), | |
| step_count=0, | |
| context=effective_context, | |
| task_prompt=effective_task_prompt, | |
| iteration=0, | |
| max_iterations=self.max_iterations, | |
| namespace_keys=[], | |
| final_answer=None, | |
| total_execution_time=0.0, | |
| ) | |
| # Initialize executor | |
| self._executor = PythonExecutor( | |
| max_output_length=self.max_output_length | |
| ) | |
| # Initialize answer dict (Prime Intellect style) | |
| self._executor.set_variable("answer", {"content": "", "ready": False}) | |
| # Load context into namespace if provided | |
| if effective_context: | |
| self._executor.set_context(effective_context) | |
| # Inject LLM functions if provided | |
| # Names: llm_query (single), llm_query_batched (official RLM), llm_batch (alias) | |
| if self.llm_query_fn: | |
| self._executor.inject_function("llm_query", self.llm_query_fn) | |
| if self.llm_batch_fn: | |
| self._executor.inject_function( | |
| "llm_query_batched", self.llm_batch_fn | |
| ) # Official name | |
| self._executor.inject_function( | |
| "llm_batch", self.llm_batch_fn | |
| ) # Alias | |
| # Inject FINAL helper function so both FINAL(x) and print(f'FINAL({x})') work | |
| # Returns the FINAL pattern as a string so it appears in stdout for detection | |
| def final_helper(value): | |
| """Helper that returns FINAL(value) string for detection.""" | |
| return f"FINAL({value})" | |
| self._executor.inject_function("FINAL", final_helper) | |
| # Inject FINAL_VAR helper that looks up variable and returns FINAL(value) | |
| # This matches official RLM behavior - strips quotes from var_name and looks up in namespace | |
| executor = self._executor # Capture for closure | |
| def final_var_helper(var_name: str): | |
| """Look up variable by name and return FINAL(value) for detection.""" | |
| # Strip quotes if present (handles both FINAL_VAR("x") and FINAL_VAR(x)) | |
| var_name_clean = str(var_name).strip().strip("\"'") | |
| # Look up variable in executor namespace | |
| value = executor.get_variable(var_name_clean) | |
| if value is not None: | |
| return f"FINAL({value})" | |
| return ( | |
| f"FINAL_VAR({var_name_clean})" # Fallback for regex detection | |
| ) | |
| self._executor.inject_function("FINAL_VAR", final_var_helper) | |
| # Update namespace keys | |
| self._state.namespace_keys = self._executor.list_variables() | |
| # Build initial message | |
| message_parts = ["REPL environment initialized."] | |
| if effective_context: | |
| message_parts.append( | |
| f"Context loaded ({len(effective_context)} chars). Use 'context' variable to access it." | |
| ) | |
| if effective_task_prompt: | |
| message_parts.append(f"Task: {effective_task_prompt}") | |
| message_parts.append( | |
| "Use answer['content'] to store your answer, and set answer['ready'] = True when done." | |
| ) | |
| return REPLObservation( | |
| result=CodeBlockResult( | |
| stdout="\n".join(message_parts), | |
| stderr="", | |
| locals_snapshot={}, | |
| execution_time=0.0, | |
| success=True, | |
| exception=None, | |
| ), | |
| context_preview=( | |
| effective_context[: self.context_preview_length] | |
| if effective_context | |
| else None | |
| ), | |
| context_length=len(effective_context) if effective_context else 0, | |
| available_variables=self._state.namespace_keys, | |
| iteration=0, | |
| max_iterations=self.max_iterations, | |
| done=False, | |
| reward=0.0, | |
| metadata={ | |
| "task_prompt": effective_task_prompt, | |
| "message": "Environment ready.", | |
| }, | |
| ) | |
| def step( | |
| self, | |
| action: REPLAction, | |
| timeout_s: Optional[float] = None, | |
| **kwargs: Any, | |
| ) -> REPLObservation: | |
| """Execute code and return observation. | |
| Args: | |
| action: REPLAction containing code to execute | |
| timeout_s: Optional timeout in seconds (not currently used) | |
| **kwargs: Additional step parameters | |
| Returns: | |
| REPLObservation with execution results | |
| """ | |
| if self._state is None or self._executor is None: | |
| raise RuntimeError( | |
| "Environment not initialized. Call reset() first." | |
| ) | |
| self._state.step_count += 1 | |
| self._state.iteration += 1 | |
| # Check if agent explicitly signals final answer | |
| if action.is_final: | |
| self._state.final_answer = action.final_answer or "" | |
| return self._create_final_observation( | |
| success=True, | |
| message="Final answer submitted.", | |
| reward=self.reward_on_success, | |
| ) | |
| # Check iteration limit | |
| if self._state.iteration >= self.max_iterations: | |
| # Check if there's a partial answer in the answer dict | |
| answer_var = self._executor.get_variable("answer") | |
| if isinstance(answer_var, dict) and answer_var.get("content"): | |
| self._state.final_answer = str(answer_var.get("content", "")) | |
| return self._create_final_observation( | |
| success=False, | |
| message=f"Maximum iterations ({self.max_iterations}) reached.", | |
| reward=self.reward_on_failure, | |
| ) | |
| # Execute code | |
| result = self._executor.execute(action.code) | |
| self._state.total_execution_time += result["execution_time"] | |
| self._state.namespace_keys = self._executor.list_variables() | |
| # Calculate reward | |
| reward = self.reward_on_iteration | |
| if not result["success"]: | |
| reward += self.reward_on_error | |
| # Check for final answer patterns | |
| final_answer = self._extract_final_answer(result["stdout"]) | |
| done = final_answer is not None | |
| if done: | |
| self._state.final_answer = final_answer | |
| reward = self.reward_on_success | |
| return REPLObservation( | |
| result=CodeBlockResult( | |
| stdout=result["stdout"], | |
| stderr=result["stderr"], | |
| locals_snapshot=result["locals_snapshot"], | |
| execution_time=result["execution_time"], | |
| success=result["success"], | |
| exception=result["exception"], | |
| ), | |
| context_preview=( | |
| self._state.context[: self.context_preview_length] | |
| if self._state.context | |
| else None | |
| ), | |
| context_length=len(self._state.context) | |
| if self._state.context | |
| else 0, | |
| available_variables=self._state.namespace_keys, | |
| iteration=self._state.iteration, | |
| max_iterations=self.max_iterations, | |
| done=done, | |
| reward=reward, | |
| metadata={ | |
| "task_prompt": self._state.task_prompt, | |
| "final_answer": final_answer, | |
| "execution_time": result["execution_time"], | |
| }, | |
| ) | |
| def _extract_final_answer(self, stdout: str) -> Optional[str]: | |
| """Extract final answer from output. | |
| Supports multiple patterns: | |
| 1. RLM-style: FINAL(answer) in stdout | |
| 2. RLM-style: FINAL_VAR(variable_name) in stdout | |
| 3. Prime Intellect style: answer = {"content": "...", "ready": True} in namespace | |
| Args: | |
| stdout: Standard output from code execution | |
| Returns: | |
| Final answer string or None if not found | |
| """ | |
| # Pattern 1: RLM-style FINAL(answer) | |
| final_match = re.search(r"FINAL\((.*?)\)", stdout, re.DOTALL) | |
| if final_match: | |
| return final_match.group(1).strip() | |
| # Pattern 2: RLM-style FINAL_VAR(variable_name) | |
| final_var_match = re.search(r"FINAL_VAR\((\w+)\)", stdout) | |
| if final_var_match and self._executor: | |
| var_name = final_var_match.group(1) | |
| value = self._executor.get_variable(var_name) | |
| if value is not None: | |
| return str(value) | |
| # Pattern 3: Prime Intellect style answer dict | |
| if self._executor: | |
| answer_var = self._executor.get_variable("answer") | |
| if isinstance(answer_var, dict): | |
| if answer_var.get("ready", False): | |
| return str(answer_var.get("content", "")) | |
| return None | |
| def _create_final_observation( | |
| self, success: bool, message: str, reward: float | |
| ) -> REPLObservation: | |
| """Create observation for episode termination. | |
| Args: | |
| success: Whether the episode ended successfully | |
| message: Termination message | |
| reward: Final reward value | |
| Returns: | |
| Final REPLObservation with done=True | |
| """ | |
| return REPLObservation( | |
| result=CodeBlockResult( | |
| stdout=message, | |
| stderr="", | |
| locals_snapshot={}, | |
| execution_time=0.0, | |
| success=success, | |
| exception=None, | |
| ), | |
| context_preview=None, | |
| context_length=0, | |
| available_variables=[], | |
| iteration=self._state.iteration if self._state else 0, | |
| max_iterations=self.max_iterations, | |
| done=True, | |
| reward=reward, | |
| metadata={ | |
| "final_answer": self._state.final_answer | |
| if self._state | |
| else None, | |
| "total_execution_time": ( | |
| self._state.total_execution_time if self._state else 0 | |
| ), | |
| "total_iterations": self._state.iteration if self._state else 0, | |
| }, | |
| ) | |
| def state(self) -> REPLState: | |
| """Get the current environment state. | |
| Returns: | |
| Current REPLState | |
| Raises: | |
| RuntimeError: If environment not initialized | |
| """ | |
| if self._state is None: | |
| raise RuntimeError( | |
| "Environment not initialized. Call reset() first." | |
| ) | |
| return self._state | |
| def close(self) -> None: | |
| """Cleanup resources.""" | |
| self._executor = None | |
| self._state = None | |
| def get_metadata(self) -> EnvironmentMetadata: | |
| """Get environment metadata. | |
| Returns: | |
| EnvironmentMetadata with environment info | |
| """ | |
| return EnvironmentMetadata( | |
| name="repl_env", | |
| description="Python REPL environment for RLM-style code execution", | |
| version="0.1.0", | |
| ) | |