sergiopaniego's picture
Update app.py
f34d06d verified
raw
history blame
4.46 kB
import gradio as gr
import spaces
import torch
from PIL import Image
import requests
from transformers import DetrImageProcessor
from transformers import DetrForObjectDetection
from random import choice
import matplotlib.pyplot as plt
import io
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
def get_output_figure(pil_img, scores, labels, boxes):
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for score, label, (xmin, ymin, xmax, ymax), c in zip(scores.tolist(), labels.tolist(), boxes.tolist(), colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=3))
text = f'{model.config.id2label[label]}: {score:0.2f}'
ax.text(xmin, ymin, text, fontsize=15,
bbox=dict(facecolor='yellow', alpha=0.5))
plt.axis('off')
return plt.gcf()
def get_output_attn_figure(image, encoding, results, outputs):
# keep only predictions of queries with +0.9 condifence (excluding no-object class)
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > 0.9
bboxes_scaled = results['boxes']
# use lists to store the outputs vis up-values
conv_features = []
hooks = [
model.model.backbone.conv_encoder.register_forward_hook(
lambda self, input, output: conv_features.append(output)
)
]
# propagate through the model
outputs = model(**encoding, output_attentions=True)
for hook in hooks:
hook.remove()
# don't need the list anymore
conv_features = conv_features[0]
# get cross-attentions weights of last decoder layer - which is of shape (batch_size, num_heads, num_queries, width*height)
dec_attn_weights = outputs.cross_attentions[-1]
#average them over the 8 heads and detach from graph
dec_attn_weights = torch.mean(dec_attn_weights, dim=1).detach()
# get the feature map shape
h, w = conv_features[-1][0].shape[-2:]
fig, axs = plt.subplots(ncols=len(bboxes_scaled), nrows=2, figsize=(22, 7))
colors = COLORS * 100
for idx, ax_i, box in zip(keep.nonzero(), axs.T, bboxes_scaled):
xmin, ymin, xmax, ymax = box.detach().numpy()
ax = ax_i[0]
ax.imshow(dec_attn_weights[0, idx].view(h, w))
ax.axis('off')
ax.set_title(f'query id: {idx.item()}')
ax = ax_i[1]
ax.imshow(image)
ax.add_patch(plt.Rectangle((xmin, ymin), xmax-xmin, ymax - ymin, fill=False,
color='blue', linewidth=3))
ax.axis('off')
ax.set_title(model.config.id2label[probas[idx].argmax().item()])
fig.tight_layout()
return plt.gcf()
@spaces.GPU
def detect(image):
encoding = processor(image, return_tensors='pt')
print(encoding.keys())
with torch.no_grad():
outputs = model(**encoding)
width, height = image.size
postprocessed_outputs = processor.post_process_object_detection(outputs, target_sizes=[(height, width)], threshold=0.9)
results = postprocessed_outputs[0]
output_figure = get_output_figure(image, results['scores'], results['labels'], results['boxes'])
buf = io.BytesIO()
output_figure.savefig(buf, bbox_inches='tight')
buf.seek(0)
output_pil_img = Image.open(buf)
output_figure_attn = get_output_attn_figure(image, encoding, results, outputs)
buf = io.BytesIO()
output_figure_attn.savefig(buf, bbox_inches='tight')
buf.seek(0)
output_pil_img_attn = Image.open(buf)
return output_pil_img, output_pil_img_attn
with gr.Blocks() as demo:
gr.Markdown("# Object detection with DETR")
gr.Markdown(
"""
This applciation uses DETR (DEtection TRansformers) to detect objects on images.
You can load an image and see the predictions for the objects detected along with the attention weights.
"""
)
gr.Interface(
fn=detect,
inputs=gr.Image(label="Input image", type="pil"),
outputs=[
gr.Image(label="Output prediction", type="pil"),
gr.Image(label="Attention weights", type="pil")
]
)#.launch()
demo.launch(show_error=True)