Spaces:
Running
Running
import csv | |
from pathlib import Path | |
from shutil import rmtree | |
from typing import List, Tuple, Dict, Union, Optional, Any, Iterable | |
from tqdm import tqdm | |
import psutil | |
import requests | |
from requests.exceptions import MissingSchema | |
import torch | |
import gradio as gr | |
from llama_cpp import Llama | |
from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound, TranscriptsDisabled | |
from huggingface_hub import hf_hub_download, list_repo_tree, list_repo_files, repo_info, repo_exists, snapshot_download | |
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_huggingface import HuggingFaceEmbeddings | |
# imports for annotations | |
from langchain.docstore.document import Document | |
from langchain_core.embeddings import Embeddings | |
from langchain_core.vectorstores import VectorStore | |
from config import ( | |
LLM_MODELS_PATH, | |
EMBED_MODELS_PATH, | |
GENERATE_KWARGS, | |
LOADER_CLASSES, | |
) | |
# type annotations | |
CHAT_HISTORY = List[Optional[Dict[str, Optional[str]]]] | |
LLM_MODEL_DICT = Dict[str, Llama] | |
EMBED_MODEL_DICT = Dict[str, Embeddings] | |
# ===================== ADDITIONAL FUNCS ======================= | |
# getting the amount of free memory on disk, CPU and GPU | |
def get_memory_usage() -> str: | |
print_memory = '' | |
memory_type = 'Disk' | |
psutil_stats = psutil.disk_usage('.') | |
memory_total = psutil_stats.total / 1024**3 | |
memory_usage = psutil_stats.used / 1024**3 | |
print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n' | |
memory_type = 'CPU' | |
psutil_stats = psutil.virtual_memory() | |
memory_total = psutil_stats.total / 1024**3 | |
memory_usage = memory_total - (psutil_stats.available / 1024**3) | |
print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n' | |
if torch.cuda.is_available(): | |
memory_type = 'GPU' | |
memory_free, memory_total = torch.cuda.mem_get_info() | |
memory_usage = memory_total - memory_free | |
print_memory += f'{memory_type} Menory Usage: {memory_usage / 1024**3:.2f} / {memory_total:.2f} GB\n' | |
print_memory = f'---------------\n{print_memory}---------------' | |
return print_memory | |
# clearing the list of documents | |
def clear_documents(documents: Iterable[Document]) -> Iterable[Document]: | |
def clear_text(text: str) -> str: | |
lines = text.split('\n') | |
lines = [line for line in lines if len(line.strip()) > 2] | |
text = '\n'.join(lines).strip() | |
return text | |
output_documents = [] | |
for document in documents: | |
text = clear_text(document.page_content) | |
if len(text) > 10: | |
document.page_content = text | |
output_documents.append(document) | |
return output_documents | |
# ===================== INTERFACE FUNCS ============================= | |
# ------------- LLM AND EMBEDDING MODELS LOADING ------------------------ | |
# downloading file by URL link and displaying progress bars tqdm and gradio | |
def download_file(file_url: str, file_path: Union[str, Path]) -> None: | |
response = requests.get(file_url, stream=True) | |
if response.status_code != 200: | |
raise Exception(f'The file is not available for download at the link: {file_url}') | |
total_size = int(response.headers.get('content-length', 0)) | |
progress_tqdm = tqdm(desc='Loading GGUF file', total=total_size, unit='iB', unit_scale=True) | |
progress_gradio = gr.Progress() | |
completed_size = 0 | |
with open(file_path, 'wb') as file: | |
for data in response.iter_content(chunk_size=4096): | |
size = file.write(data) | |
progress_tqdm.update(size) | |
completed_size += size | |
desc = f'Loading GGUF file, {completed_size/1024**3:.3f}/{total_size/1024**3:.3f} GB' | |
progress_gradio(completed_size/total_size, desc=desc) | |
# loading and initializing the GGUF model | |
def load_llm_model(model_repo: str, model_file: str) -> Tuple[LLM_MODEL_DICT, str, str]: | |
llm_model = None | |
load_log = '' | |
support_system_role = False | |
if isinstance(model_file, list): | |
load_log += 'No model selected\n' | |
return {'llm_model': llm_model}, support_system_role, load_log | |
if '(' in model_file: | |
model_file = model_file.split('(')[0].rstrip() | |
progress = gr.Progress() | |
progress(0.3, desc='Step 1/2: Download the GGUF file') | |
model_path = LLM_MODELS_PATH / model_file | |
if model_path.is_file(): | |
load_log += f'Model {model_file} already loaded, reinitializing\n' | |
else: | |
try: | |
gguf_url = f'https://huggingface.co/{model_repo}/resolve/main/{model_file}' | |
download_file(gguf_url, model_path) | |
load_log += f'Model {model_file} loaded\n' | |
except Exception as ex: | |
model_path = '' | |
load_log += f'Error loading model, error code:\n{ex}\n' | |
if model_path: | |
progress(0.7, desc='Step 2/2: Initialize the model') | |
try: | |
llm_model = Llama(model_path=str(model_path), n_gpu_layers=-1, verbose=False) | |
support_system_role = 'System role not supported' not in llm_model.metadata['tokenizer.chat_template'] | |
load_log += f'Model {model_file} initialized, max context size is {llm_model.n_ctx()} tokens\n' | |
except Exception as ex: | |
load_log += f'Error initializing model, error code:\n{ex}\n' | |
llm_model = {'llm_model': llm_model} | |
return llm_model, support_system_role, load_log | |
# loading and initializing the embedding model | |
def load_embed_model(model_repo: str) -> Tuple[Dict[str, HuggingFaceEmbeddings], str]: | |
embed_model = None | |
load_log = '' | |
if isinstance(model_repo, list): | |
load_log = 'No model selected' | |
return embed_model, load_log | |
progress = gr.Progress() | |
folder_name = model_repo.replace('/', '_') | |
folder_path = EMBED_MODELS_PATH / folder_name | |
if Path(folder_path).is_dir(): | |
load_log += f'Reinitializing model {model_repo} \n' | |
else: | |
progress(0.5, desc='Step 1/2: Download model repository') | |
snapshot_download( | |
repo_id=model_repo, | |
local_dir=folder_path, | |
ignore_patterns='*.h5', | |
) | |
load_log += f'Model {model_repo} loaded\n' | |
progress(0.7, desc='Шаг 2/2: Инициализация модели') | |
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'} | |
embed_model = HuggingFaceEmbeddings( | |
model_name=str(folder_path), | |
model_kwargs=model_kwargs, | |
# encode_kwargs={'normalize_embeddings': True}, | |
) | |
load_log += f'Embeddings model {model_repo} initialized\n' | |
load_log += f'Please upload documents and initialize database again\n' | |
embed_model = {'embed_model': embed_model} | |
return embed_model, load_log | |
# adding a new HF repository new_model_repo to the current list of model_repos | |
def add_new_model_repo(new_model_repo: str, model_repos: List[str]) -> Tuple[gr.Dropdown, str]: | |
load_log = '' | |
repo = new_model_repo.strip() | |
if repo: | |
repo = repo.split('/')[-2:] | |
if len(repo) == 2: | |
repo = '/'.join(repo).split('?')[0] | |
if repo_exists(repo) and repo not in model_repos: | |
model_repos.insert(0, repo) | |
load_log += f'Model repository {repo} successfully added\n' | |
else: | |
load_log += 'Invalid HF repository name or model already in the list\n' | |
else: | |
load_log += 'Invalid link to HF repository\n' | |
else: | |
load_log += 'Empty line in HF repository field\n' | |
model_repo_dropdown = gr.Dropdown(choices=model_repos, value=model_repos[0]) | |
return model_repo_dropdown, load_log | |
# get list of GGUF models from HF repository | |
def get_gguf_model_names(model_repo: str) -> gr.Dropdown: | |
repo_files = list(list_repo_tree(model_repo)) | |
repo_files = [file for file in repo_files if file.path.endswith('.gguf')] | |
model_paths = [f'{file.path} ({file.size / 1000 ** 3:.2f}G)' for file in repo_files] | |
model_paths_dropdown = gr.Dropdown( | |
choices=model_paths, | |
value=model_paths[0], | |
label='GGUF model file', | |
) | |
return model_paths_dropdown | |
# delete model files and folders to clear space except for the current model gguf_filename | |
def clear_llm_folder(gguf_filename: str) -> None: | |
if gguf_filename is None: | |
gr.Info(f'The name of the model file that does not need to be deleted is not selected.') | |
return | |
if '(' in gguf_filename: | |
gguf_filename = gguf_filename.split('(')[0].rstrip() | |
for path in LLM_MODELS_PATH.iterdir(): | |
if path.name == gguf_filename: | |
continue | |
if path.is_file(): | |
path.unlink(missing_ok=True) | |
gr.Info(f'All files removed from directory {LLM_MODELS_PATH} except {gguf_filename}') | |
# delete model folders to clear space except for the current model model_folder_name | |
def clear_embed_folder(model_repo: str) -> None: | |
if model_repo is None: | |
gr.Info(f'The name of the model that does not need to be deleted is not selected.') | |
return | |
model_folder_name = model_repo.replace('/', '_') | |
for path in EMBED_MODELS_PATH.iterdir(): | |
if path.name == model_folder_name: | |
continue | |
if path.is_dir(): | |
rmtree(path, ignore_errors=True) | |
gr.Info(f'All directories have been removed from the {EMBED_MODELS_PATH} directory except {model_folder_name}') | |
# ------------------------ YOUTUBE ------------------------ | |
# function to check availability of subtitles, if manual or automatic are available - returns True and logs | |
# if subtitles are not available - returns False and logs | |
def check_subtitles_available(yt_video_link: str, target_lang: str) -> Tuple[bool, str]: | |
video_id = yt_video_link.split('watch?v=')[-1].split('&')[0] | |
load_log = '' | |
available = True | |
try: | |
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id) | |
try: | |
transcript = transcript_list.find_transcript([target_lang]) | |
if transcript.is_generated: | |
load_log += f'Automatic subtitles will be loaded, manual ones are not available for video {yt_video_link}\n' | |
else: | |
load_log += f'Manual subtitles will be downloaded for the video {yt_video_link}\n' | |
except NoTranscriptFound: | |
load_log += f'Subtitle language {target_lang} is not available for video {yt_video_link}\n' | |
available = False | |
except TranscriptsDisabled: | |
load_log += f'Invalid video url ({yt_video_link}) or current server IP is blocked for YouTube\n' | |
available = False | |
return available, load_log | |
# ------------- UPLOADING DOCUMENTS FOR RAG ------------------------ | |
# extract documents (in langchain Documents format) from downloaded files | |
def load_documents_from_files(upload_files: List[str]) -> Tuple[List[Document], str]: | |
load_log = '' | |
documents = [] | |
for upload_file in upload_files: | |
file_extension = f".{upload_file.split('.')[-1]}" | |
if file_extension in LOADER_CLASSES: | |
loader_class = LOADER_CLASSES[file_extension] | |
loader_kwargs = {} | |
if file_extension == '.csv': | |
with open(upload_file) as csvfile: | |
delimiter = csv.Sniffer().sniff(csvfile.read(4096)).delimiter | |
loader_kwargs = {'csv_args': {'delimiter': delimiter}} | |
try: | |
load_documents = loader_class(upload_file, **loader_kwargs).load() | |
documents.extend(load_documents) | |
except Exception as ex: | |
load_log += f'Error uploading file {upload_file}\n' | |
load_log += f'Error code: {ex}\n' | |
continue | |
else: | |
load_log += f'Unsupported file format {upload_file}\n' | |
continue | |
return documents, load_log | |
# extracting documents (in langchain Documents format) from WEB links | |
def load_documents_from_links( | |
web_links: str, | |
subtitles_lang: str, | |
) -> Tuple[List[Document], str]: | |
load_log = '' | |
documents = [] | |
loader_class_kwargs = {} | |
web_links = [web_link.strip() for web_link in web_links.split('\n') if web_link.strip()] | |
for web_link in web_links: | |
if 'youtube.com' in web_link: | |
available, log = check_subtitles_available(web_link, subtitles_lang) | |
load_log += log | |
if not available: | |
continue | |
loader_class = LOADER_CLASSES['youtube'].from_youtube_url | |
loader_class_kwargs = {'language': subtitles_lang} | |
else: | |
loader_class = LOADER_CLASSES['web'] | |
try: | |
if requests.get(web_link).status_code != 200: | |
load_log += f'Ссылка недоступна для Python requests: {web_link}\n' | |
continue | |
load_documents = loader_class(web_link, **loader_class_kwargs).load() | |
if len(load_documents) == 0: | |
load_log += f'No text chunks were found at the link: {web_link}\n' | |
continue | |
documents.extend(load_documents) | |
except MissingSchema: | |
load_log += f'Invalid link: {web_link}\n' | |
continue | |
except Exception as ex: | |
load_log += f'Error loading data by web loader at link: {web_link}\n' | |
load_log += f'Error code: {ex}\n' | |
continue | |
return documents, load_log | |
# uploading files and generating documents and databases | |
def load_documents_and_create_db( | |
upload_files: Optional[List[str]], | |
web_links: str, | |
subtitles_lang: str, | |
chunk_size: int, | |
chunk_overlap: int, | |
embed_model_dict: EMBED_MODEL_DICT, | |
) -> Tuple[List[Document], Optional[VectorStore], str]: | |
load_log = '' | |
all_documents = [] | |
db = None | |
progress = gr.Progress() | |
embed_model = embed_model_dict.get('embed_model') | |
if embed_model is None: | |
load_log += 'Embeddings model not initialized, DB cannot be created' | |
return all_documents, db, load_log | |
if upload_files is None and not web_links: | |
load_log = 'No files or links selected' | |
return all_documents, db, load_log | |
if upload_files is not None: | |
progress(0.3, desc='Step 1/2: Upload documents from files') | |
docs, log = load_documents_from_files(upload_files) | |
all_documents.extend(docs) | |
load_log += log | |
if web_links: | |
progress(0.3 if upload_files is None else 0.5, desc='Step 1/2: Upload documents via links') | |
docs, log = load_documents_from_links(web_links, subtitles_lang) | |
all_documents.extend(docs) | |
load_log += log | |
if len(all_documents) == 0: | |
load_log += 'Download was interrupted because no documents were extracted\n' | |
load_log += 'RAG mode cannot be activated' | |
return all_documents, db, load_log | |
load_log += f'Documents loaded: {len(all_documents)}\n' | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap, | |
) | |
documents = text_splitter.split_documents(all_documents) | |
documents = clear_documents(documents) | |
load_log += f'Documents are divided, number of text chunks: {len(documents)}\n' | |
progress(0.7, desc='Step 2/2: Initialize DB') | |
db = FAISS.from_documents(documents=documents, embedding=embed_model) | |
load_log += 'DB is initialized, RAG mode is activated and can be activated in the Chatbot tab' | |
return documents, db, load_log | |
# ------------------ ФУНКЦИИ ЧАТ БОТА ------------------------ | |
# adding a user message to the chat bot window | |
def user_message_to_chatbot(user_message: str, chatbot: CHAT_HISTORY) -> Tuple[str, CHAT_HISTORY]: | |
chatbot.append({'role': 'user', 'metadata': {'title': None}, 'content': user_message}) | |
return '', chatbot | |
# formatting prompt with adding context if DB is available and RAG mode is enabled | |
def update_user_message_with_context( | |
chatbot: CHAT_HISTORY, | |
rag_mode: bool, | |
db: VectorStore, | |
k: Union[int, str], | |
score_threshold: float, | |
context_template: str, | |
) -> Tuple[str, CHAT_HISTORY]: | |
user_message = chatbot[-1]['content'] | |
user_message_with_context = '' | |
if '{user_message}' not in context_template and '{context}' not in context_template: | |
gr.Info('Context template must include {user_message} and {context}') | |
return user_message_with_context | |
if db is not None and rag_mode and user_message.strip(): | |
if k == 'all': | |
k = len(db.docstore._dict) | |
docs_and_distances = db.similarity_search_with_relevance_scores( | |
user_message, | |
k=k, | |
score_threshold=score_threshold, | |
) | |
if len(docs_and_distances) > 0: | |
retriever_context = '\n\n'.join([doc[0].page_content for doc in docs_and_distances]) | |
user_message_with_context = context_template.format( | |
user_message=user_message, | |
context=retriever_context, | |
) | |
return user_message_with_context | |
# model response generation | |
def get_llm_response( | |
chatbot: CHAT_HISTORY, | |
llm_model_dict: LLM_MODEL_DICT, | |
user_message_with_context: str, | |
rag_mode: bool, | |
system_prompt: str, | |
support_system_role: bool, | |
history_len: int, | |
do_sample: bool, | |
*generate_args, | |
) -> CHAT_HISTORY: | |
llm_model = llm_model_dict.get('llm_model') | |
if llm_model is None: | |
gr.Info('Model not initialized') | |
yield chatbot[:-1] | |
return | |
gen_kwargs = dict(zip(GENERATE_KWARGS.keys(), generate_args)) | |
gen_kwargs['top_k'] = int(gen_kwargs['top_k']) | |
if not do_sample: | |
gen_kwargs['top_p'] = 0.0 | |
gen_kwargs['top_k'] = 1 | |
gen_kwargs['repeat_penalty'] = 1.0 | |
user_message = chatbot[-1]['content'] | |
if not user_message.strip(): | |
yield chatbot[:-1] | |
return | |
if rag_mode: | |
if user_message_with_context: | |
user_message = user_message_with_context | |
else: | |
gr.Info(( | |
'No documents relevant to the query were found, generation in RAG mode is not possible.\n' | |
'Or Context template is specified incorrectly.\n' | |
'Try reducing searh_score_threshold or disable RAG mode for normal generation' | |
)) | |
yield chatbot[:-1] | |
return | |
messages = [] | |
if support_system_role and system_prompt: | |
messages.append({'role': 'system', 'metadata': {'title': None}, 'content': system_prompt}) | |
if history_len != 0: | |
messages.extend(chatbot[:-1][-(history_len*2):]) | |
messages.append({'role': 'user', 'metadata': {'title': None}, 'content': user_message}) | |
stream_response = llm_model.create_chat_completion( | |
messages=messages, | |
stream=True, | |
**gen_kwargs, | |
) | |
try: | |
chatbot.append({'role': 'assistant', 'metadata': {'title': None}, 'content': ''}) | |
for chunk in stream_response: | |
token = chunk['choices'][0]['delta'].get('content') | |
if token is not None: | |
chatbot[-1]['content'] += token | |
yield chatbot | |
except Exception as ex: | |
gr.Info(f'Error generating response, error code: {ex}') | |
yield chatbot[:-1] | |
return | |