chatbot-rag / app.py
sergey21000's picture
Upload 5 files
fa7dd9e verified
raw
history blame
14.4 kB
from typing import List, Optional
import gradio as gr
from langchain_core.vectorstores import VectorStore
from config import (
LLM_MODEL_REPOS,
EMBED_MODEL_REPOS,
SUBTITLES_LANGUAGES,
GENERATE_KWARGS,
)
from utils import (
load_llm_model,
load_embed_model,
load_documents_and_create_db,
user_message_to_chatbot,
update_user_message_with_context,
get_llm_response,
get_gguf_model_names,
add_new_model_repo,
clear_llm_folder,
clear_embed_folder,
get_memory_usage,
)
# ============ INTERFACE COMPONENT INITIALIZATION FUNCS ============
def get_rag_settings(rag_mode: bool, render: bool = True):
k = gr.Radio(
choices=[1, 2, 3, 4, 5, 'all'],
value=2,
label='Number of relevant documents for search',
visible=rag_mode,
render=render,
)
score_threshold = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.05,
label='relevance_scores_threshold',
visible=rag_mode,
render=render,
)
return k, score_threshold
def get_user_message_with_context(text: str, rag_mode: bool) -> gr.component:
num_lines = len(text.split('\n'))
max_lines = 10
num_lines = max_lines if num_lines > max_lines else num_lines
return gr.Textbox(
text,
visible=rag_mode,
interactive=False,
label='User Message With Context',
lines=num_lines,
)
def get_system_prompt_component(interactive: bool) -> gr.Textbox:
value = '' if interactive else 'System prompt is not supported by this model'
return gr.Textbox(value=value, label='System prompt', interactive=interactive)
def get_generate_args(do_sample: bool) -> List[gr.component]:
generate_args = [
gr.Slider(minimum=0.1, maximum=3, value=GENERATE_KWARGS['temperature'], step=0.1, label='temperature', visible=do_sample),
gr.Slider(minimum=0.1, maximum=1, value=GENERATE_KWARGS['top_p'], step=0.01, label='top_p', visible=do_sample),
gr.Slider(minimum=1, maximum=50, value=GENERATE_KWARGS['top_k'], step=1, label='top_k', visible=do_sample),
gr.Slider(minimum=1, maximum=5, value=GENERATE_KWARGS['repeat_penalty'], step=0.1, label='repeat_penalty', visible=do_sample),
]
return generate_args
def get_rag_mode_component(db: Optional[VectorStore]) -> gr.Checkbox:
value = visible = db is not None
return gr.Checkbox(value=value, label='RAG Mode', scale=1, visible=visible)
# ================ LOADING AND INITIALIZING MODELS ========================
start_llm_model, start_support_system_role, load_log = load_llm_model(LLM_MODEL_REPOS[0], 'gemma-2-2b-it-Q8_0.gguf')
start_embed_model, load_log = load_embed_model(EMBED_MODEL_REPOS[0])
# ================== APPLICATION WEB INTERFACE ============================
theme = gr.themes.Base(primary_hue='green', secondary_hue='yellow', neutral_hue='zinc').set(
loader_color='rgb(0, 255, 0)',
slider_color='rgb(0, 200, 0)',
body_text_color_dark='rgb(0, 200, 0)',
button_secondary_background_fill_dark='green',
)
css = '''.gradio-container {width: 60% !important}'''
with gr.Blocks(theme=theme, css=css) as interface:
# ==================== GRADIO STATES ===============================
documents = gr.State([])
db = gr.State(None)
user_message_with_context = gr.State('')
support_system_role = gr.State(start_support_system_role)
llm_model_repos = gr.State(LLM_MODEL_REPOS)
embed_model_repos = gr.State(EMBED_MODEL_REPOS)
llm_model = gr.State(start_llm_model)
embed_model = gr.State(start_embed_model)
# ==================== BOT PAGE =================================
with gr.Tab(label='Chatbot'):
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
show_copy_button=True,
bubble_full_width=False,
height=480,
)
user_message = gr.Textbox(label='User')
with gr.Row():
user_message_btn = gr.Button('Send')
stop_btn = gr.Button('Stop')
clear_btn = gr.Button('Clear')
# ------------- GENERATION PARAMETERS -------------------
with gr.Column(scale=1, min_width=80):
with gr.Group():
gr.Markdown('History size')
history_len = gr.Slider(
minimum=0,
maximum=5,
value=0,
step=1,
info='Number of previous messages taken into account in history',
label='history_len',
show_label=False,
)
with gr.Group():
gr.Markdown('Generation parameters')
do_sample = gr.Checkbox(
value=False,
label='do_sample',
info='Activate random sampling',
)
generate_args = get_generate_args(do_sample.value)
do_sample.change(
fn=get_generate_args,
inputs=do_sample,
outputs=generate_args,
show_progress=False,
)
rag_mode = get_rag_mode_component(db=db.value)
k, score_threshold = get_rag_settings(rag_mode=rag_mode.value, render=False)
rag_mode.change(
fn=get_rag_settings,
inputs=[rag_mode],
outputs=[k, score_threshold],
)
with gr.Row():
k.render()
score_threshold.render()
# ---------------- SYSTEM PROMPT AND USER MESSAGE -----------
with gr.Accordion('Prompt', open=True):
system_prompt = get_system_prompt_component(interactive=support_system_role.value)
user_message_with_context = get_user_message_with_context(text='', rag_mode=rag_mode.value)
# ---------------- SEND, CLEAR AND STOP BUTTONS ------------
generate_event = gr.on(
triggers=[user_message.submit, user_message_btn.click],
fn=user_message_to_chatbot,
inputs=[user_message, chatbot],
outputs=[user_message, chatbot],
queue=False,
).then(
fn=update_user_message_with_context,
inputs=[chatbot, rag_mode, db, k, score_threshold],
outputs=[user_message_with_context],
).then(
fn=get_user_message_with_context,
inputs=[user_message_with_context, rag_mode],
outputs=[user_message_with_context],
).then(
fn=get_llm_response,
inputs=[chatbot, llm_model, user_message_with_context, rag_mode, system_prompt,
support_system_role, history_len, do_sample, *generate_args],
outputs=[chatbot],
)
stop_btn.click(
fn=None,
inputs=None,
outputs=None,
cancels=generate_event,
queue=False,
)
clear_btn.click(
fn=lambda: (None, ''),
inputs=None,
outputs=[chatbot, user_message_with_context],
queue=False,
)
# ================= FILE DOWNLOAD PAGE =========================
with gr.Tab(label='Load documents'):
with gr.Row(variant='compact'):
upload_files = gr.File(file_count='multiple', label='Loading text files')
web_links = gr.Textbox(lines=6, label='Links to Web sites or YouTube')
with gr.Row(variant='compact'):
chunk_size = gr.Slider(50, 2000, value=500, step=50, label='Chunk size')
chunk_overlap = gr.Slider(0, 200, value=20, step=10, label='Chunk overlap')
subtitles_lang = gr.Radio(
SUBTITLES_LANGUAGES,
value=SUBTITLES_LANGUAGES[0],
label='YouTube subtitle language',
)
load_documents_btn = gr.Button(value='Upload documents and initialize database')
load_docs_log = gr.Textbox(label='Status of loading and splitting documents', interactive=False)
load_documents_btn.click(
fn=load_documents_and_create_db,
inputs=[upload_files, web_links, subtitles_lang, chunk_size, chunk_overlap, embed_model],
outputs=[documents, db, load_docs_log],
).success(
fn=get_rag_mode_component,
inputs=[db],
outputs=[rag_mode],
)
gr.HTML("""<h3 style='text-align: center'>
<a href="https://github.com/sergey21000/chatbot-rag" target='_blank'>GitHub Repository</a></h3>
""")
# ================= VIEW PAGE FOR ALL DOCUMENTS =================
with gr.Tab(label='View documents'):
view_documents_btn = gr.Button(value='Show downloaded text chunks')
view_documents_textbox = gr.Textbox(
lines=1,
placeholder='To view chunks, load documents in the Load documents tab',
label='Uploaded chunks',
)
sep = '=' * 20
view_documents_btn.click(
lambda documents: f'\n{sep}\n\n'.join([doc.page_content for doc in documents]),
inputs=[documents],
outputs=[view_documents_textbox],
)
# ============== GGUF MODELS DOWNLOAD PAGE =====================
with gr.Tab('Load LLM model'):
new_llm_model_repo = gr.Textbox(
value='',
label='Add repository',
placeholder='Link to repository of HF models in GGUF format',
)
new_llm_model_repo_btn = gr.Button('Add repository')
curr_llm_model_repo = gr.Dropdown(
choices=LLM_MODEL_REPOS,
value=None,
label='HF Model Repository',
)
curr_llm_model_path = gr.Dropdown(
choices=[],
value=None,
label='GGUF model file',
)
load_llm_model_btn = gr.Button('Loading and initializing model')
load_llm_model_log = gr.Textbox(
value=f'Model {LLM_MODEL_REPOS[0]} loaded at application startup',
label='Model loading status',
lines=6,
)
with gr.Group():
gr.Markdown('Free up disk space by deleting all models except the currently selected one')
clear_llm_folder_btn = gr.Button('Clear folder')
new_llm_model_repo_btn.click(
fn=add_new_model_repo,
inputs=[new_llm_model_repo, llm_model_repos],
outputs=[curr_llm_model_repo, load_llm_model_log],
).success(
fn=lambda: '',
inputs=None,
outputs=[new_llm_model_repo],
)
curr_llm_model_repo.change(
fn=get_gguf_model_names,
inputs=[curr_llm_model_repo],
outputs=[curr_llm_model_path],
)
load_llm_model_btn.click(
fn=load_llm_model,
inputs=[curr_llm_model_repo, curr_llm_model_path],
outputs=[llm_model, support_system_role, load_llm_model_log],
queue=True,
).success(
fn=lambda log: log + get_memory_usage(),
inputs=[load_llm_model_log],
outputs=[load_llm_model_log],
).then(
fn=get_system_prompt_component,
inputs=[support_system_role],
outputs=[system_prompt],
)
clear_llm_folder_btn.click(
fn=clear_llm_folder,
inputs=[curr_llm_model_path],
outputs=None,
).success(
fn=lambda model_path: f'Models other than {model_path} removed',
inputs=[curr_llm_model_path],
outputs=None,
)
# ============== EMBEDDING MODELS DOWNLOAD PAGE =============
with gr.Tab('Load embed model'):
new_embed_model_repo = gr.Textbox(
value='',
label='Add repository',
placeholder='Link to HF model repository',
)
new_embed_model_repo_btn = gr.Button('Add repository')
curr_embed_model_repo = gr.Dropdown(
choices=EMBED_MODEL_REPOS,
value=None,
label='HF model repository',
)
load_embed_model_btn = gr.Button('Loading and initializing model')
load_embed_model_log = gr.Textbox(
value=f'Model {EMBED_MODEL_REPOS[0]} loaded at application startup',
label='Model loading status',
lines=7,
)
with gr.Group():
gr.Markdown('Free up disk space by deleting all models except the currently selected one')
clear_embed_folder_btn = gr.Button('Clear folder')
new_embed_model_repo_btn.click(
fn=add_new_model_repo,
inputs=[new_embed_model_repo, embed_model_repos],
outputs=[curr_embed_model_repo, load_embed_model_log],
).success(
fn=lambda: '',
inputs=None,
outputs=new_embed_model_repo,
)
load_embed_model_btn.click(
fn=load_embed_model,
inputs=[curr_embed_model_repo],
outputs=[embed_model, load_embed_model_log],
).success(
fn=lambda log: log + get_memory_usage(),
inputs=[load_embed_model_log],
outputs=[load_embed_model_log],
)
clear_embed_folder_btn.click(
fn=clear_embed_folder,
inputs=[curr_embed_model_repo],
outputs=None,
).success(
fn=lambda model_repo: f'Models other than {model_repo} removed',
inputs=[curr_embed_model_repo],
outputs=None,
)
interface.launch(server_name='0.0.0.0', server_port=7860) # debug=True