Spaces:
Runtime error
Runtime error
refactor
Browse files- chunking_utils.py +42 -0
- embed_utils.py +55 -0
- main.py +39 -136
- models.py +19 -0
chunking_utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from tqdm import tqdm
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
|
7 |
+
from models import env_config
|
8 |
+
|
9 |
+
|
10 |
+
class Chunker:
|
11 |
+
def __init__(self, strategy, split_seq=".", chunk_len=512):
|
12 |
+
self.split_seq = split_seq
|
13 |
+
self.chunk_len = chunk_len
|
14 |
+
if strategy == "recursive":
|
15 |
+
self.split = RecursiveCharacterTextSplitter(
|
16 |
+
chunk_size=chunk_len,
|
17 |
+
separators=[split_seq]
|
18 |
+
).split_text
|
19 |
+
if strategy == "sequence":
|
20 |
+
self.split = self.seq_splitter
|
21 |
+
if strategy == "constant":
|
22 |
+
self.split = self.const_splitter
|
23 |
+
|
24 |
+
def seq_splitter(self, text):
|
25 |
+
return text.split(self.split_seq)
|
26 |
+
|
27 |
+
def const_splitter(self, text):
|
28 |
+
return [
|
29 |
+
text[i * self.chunk_len:(i + 1) * self.chunk_len]
|
30 |
+
for i in range(int(np.ceil(len(text) / self.chunk_len)))
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def chunk_generator(input_dataset, chunker, tmp_file):
|
35 |
+
for i in tqdm(range(len(input_dataset))):
|
36 |
+
chunks = chunker.split(input_dataset[i][env_config.input_text_col])
|
37 |
+
for chunk in chunks:
|
38 |
+
if chunk:
|
39 |
+
tmp_file.write(
|
40 |
+
json.dumps({env_config.input_text_col: chunk}) + "\n"
|
41 |
+
)
|
42 |
+
yield {env_config.input_text_col: chunk}
|
embed_utils.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import asyncio
|
3 |
+
import logging
|
4 |
+
import time
|
5 |
+
|
6 |
+
from tqdm.asyncio import tqdm_asyncio
|
7 |
+
from huggingface_hub import get_inference_endpoint
|
8 |
+
|
9 |
+
from models import env_config, embed_config
|
10 |
+
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
endpoint = get_inference_endpoint(env_config.tei_name, token=env_config.hf_token)
|
15 |
+
|
16 |
+
|
17 |
+
async def embed_chunk(sentence, semaphore, tmp_file):
|
18 |
+
async with semaphore:
|
19 |
+
payload = {
|
20 |
+
"inputs": sentence,
|
21 |
+
"truncate": True
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
resp = await endpoint.async_client.post(json=payload)
|
26 |
+
except Exception as e:
|
27 |
+
raise RuntimeError(str(e))
|
28 |
+
|
29 |
+
result = json.loads(resp)
|
30 |
+
tmp_file.write(
|
31 |
+
json.dumps({"vector": result[0], env_config.input_text_col: sentence}) + "\n"
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
async def embed_wrapper(input_ds, temp_file):
|
36 |
+
semaphore = asyncio.BoundedSemaphore(embed_config.semaphore_bound)
|
37 |
+
jobs = [
|
38 |
+
asyncio.create_task(embed_chunk(row[env_config.input_text_col], semaphore, temp_file))
|
39 |
+
for row in input_ds if row[env_config.input_text_col].strip()
|
40 |
+
]
|
41 |
+
logger.info(f"num chunks to embed: {len(jobs)}")
|
42 |
+
|
43 |
+
tic = time.time()
|
44 |
+
await tqdm_asyncio.gather(*jobs)
|
45 |
+
logger.info(f"embed time: {time.time() - tic}")
|
46 |
+
|
47 |
+
|
48 |
+
def wake_up_endpoint():
|
49 |
+
endpoint.fetch()
|
50 |
+
if endpoint.status != 'running':
|
51 |
+
logger.info("Starting up TEI endpoint")
|
52 |
+
endpoint.resume()
|
53 |
+
endpoint.wait()
|
54 |
+
logger.info("TEI endpoint is up")
|
55 |
+
return
|
main.py
CHANGED
@@ -1,46 +1,32 @@
|
|
1 |
import asyncio
|
2 |
import logging
|
3 |
-
import numpy as np
|
4 |
-
import time
|
5 |
-
import json
|
6 |
-
import os
|
7 |
import tempfile
|
8 |
-
import requests
|
9 |
|
10 |
from fastapi import FastAPI, Request, BackgroundTasks
|
11 |
from fastapi.responses import HTMLResponse
|
12 |
from fastapi.staticfiles import StaticFiles
|
13 |
from fastapi.templating import Jinja2Templates
|
14 |
-
|
15 |
-
from aiohttp import ClientSession
|
16 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
17 |
from datasets import Dataset, load_dataset
|
18 |
-
from tqdm import tqdm
|
19 |
-
from tqdm.asyncio import tqdm_asyncio
|
20 |
|
21 |
-
from models import chunk_config, embed_config, WebhookPayload
|
|
|
|
|
22 |
|
23 |
logging.basicConfig(level=logging.INFO)
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
EMBED_DS_NAME = os.getenv("EMBED_DS_NAME")
|
35 |
-
# splits of input dataset to process, comma separated
|
36 |
-
INPUT_SPLITS = os.getenv("INPUT_SPLITS")
|
37 |
-
# name of column to load from input dataset
|
38 |
-
INPUT_TEXT_COL = os.getenv("INPUT_TEXT_COL")
|
39 |
|
40 |
-
INPUT_SPLITS = [spl.strip() for spl in INPUT_SPLITS.split(",") if spl]
|
41 |
|
42 |
-
app = FastAPI()
|
43 |
-
app.state.seen_Sha = set()
|
44 |
|
45 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
46 |
templates = Jinja2Templates(directory="templates")
|
@@ -61,151 +47,68 @@ async def post_webhook(
|
|
61 |
and payload.event.scope.startswith("repo.content")
|
62 |
and payload.repo.type == "dataset"
|
63 |
# webhook posts multiple requests with the same update, this addresses that
|
64 |
-
and payload.repo.headSha not in
|
65 |
):
|
66 |
-
# no-op
|
67 |
logger.info("Update detected, no action taken")
|
68 |
return {"processed": False}
|
69 |
|
70 |
-
|
71 |
-
task_queue.add_task(
|
72 |
-
task_queue.add_task(embed_dataset, ds_name=CHUNKED_DS_NAME)
|
73 |
|
74 |
return {"processed": True}
|
75 |
|
76 |
|
77 |
-
|
78 |
-
CHUNKING
|
79 |
-
"""
|
80 |
-
|
81 |
-
class Chunker:
|
82 |
-
def __init__(self, strategy, split_seq=".", chunk_len=512):
|
83 |
-
self.split_seq = split_seq
|
84 |
-
self.chunk_len = chunk_len
|
85 |
-
if strategy == "recursive":
|
86 |
-
self.split = RecursiveCharacterTextSplitter(
|
87 |
-
chunk_size=chunk_len,
|
88 |
-
separators=[split_seq]
|
89 |
-
).split_text
|
90 |
-
if strategy == "sequence":
|
91 |
-
self.split = self.seq_splitter
|
92 |
-
if strategy == "constant":
|
93 |
-
self.split = self.const_splitter
|
94 |
-
|
95 |
-
def seq_splitter(self, text):
|
96 |
-
return text.split(self.split_seq)
|
97 |
-
|
98 |
-
def const_splitter(self, text):
|
99 |
-
return [
|
100 |
-
text[i * self.chunk_len:(i + 1) * self.chunk_len]
|
101 |
-
for i in range(int(np.ceil(len(text) / self.chunk_len)))
|
102 |
-
]
|
103 |
-
|
104 |
-
|
105 |
-
def chunk_generator(input_dataset, chunker):
|
106 |
-
for i in tqdm(range(len(input_dataset))):
|
107 |
-
chunks = chunker.split(input_dataset[i][INPUT_TEXT_COL])
|
108 |
-
for chunk in chunks:
|
109 |
-
if chunk:
|
110 |
-
yield {INPUT_TEXT_COL: chunk}
|
111 |
-
|
112 |
-
|
113 |
-
def chunk_dataset(ds_name):
|
114 |
logger.info("Update detected, chunking is scheduled")
|
115 |
-
input_ds = load_dataset(ds_name, split="+".join(
|
116 |
chunker = Chunker(
|
117 |
strategy=chunk_config.strategy,
|
118 |
split_seq=chunk_config.split_seq,
|
119 |
chunk_len=chunk_config.chunk_len
|
120 |
)
|
121 |
-
|
122 |
dataset = Dataset.from_generator(
|
123 |
chunk_generator,
|
124 |
gen_kwargs={
|
125 |
"input_dataset": input_ds,
|
126 |
-
"chunker": chunker
|
|
|
127 |
}
|
128 |
)
|
129 |
|
130 |
dataset.push_to_hub(
|
131 |
-
|
132 |
private=chunk_config.private,
|
133 |
-
token=
|
134 |
)
|
135 |
|
136 |
logger.info("Done chunking")
|
137 |
-
return
|
138 |
-
|
139 |
-
|
140 |
-
"""
|
141 |
-
EMBEDDING
|
142 |
-
"""
|
143 |
|
144 |
-
async def embed_sent(sentence, semaphore, tmp_file):
|
145 |
-
async with semaphore:
|
146 |
-
payload = {
|
147 |
-
"inputs": sentence,
|
148 |
-
"truncate": True
|
149 |
-
}
|
150 |
|
151 |
-
|
152 |
-
headers={
|
153 |
-
"Content-Type": "application/json",
|
154 |
-
"Authorization": f"Bearer {HF_TOKEN}"
|
155 |
-
}
|
156 |
-
) as session:
|
157 |
-
async with session.post(TEI_URL, json=payload) as resp:
|
158 |
-
if resp.status != 200:
|
159 |
-
raise RuntimeError(await resp.text())
|
160 |
-
result = await resp.json()
|
161 |
-
|
162 |
-
tmp_file.write(
|
163 |
-
json.dumps({"vector": result[0], INPUT_TEXT_COL: sentence}) + "\n"
|
164 |
-
)
|
165 |
-
|
166 |
-
|
167 |
-
async def embed(input_ds, temp_file):
|
168 |
-
semaphore = asyncio.BoundedSemaphore(embed_config.semaphore_bound)
|
169 |
-
jobs = [
|
170 |
-
asyncio.create_task(embed_sent(row[INPUT_TEXT_COL], semaphore, temp_file))
|
171 |
-
for row in input_ds if row[INPUT_TEXT_COL].strip()
|
172 |
-
]
|
173 |
-
logger.info(f"num chunks to embed: {len(jobs)}")
|
174 |
-
|
175 |
-
tic = time.time()
|
176 |
-
await tqdm_asyncio.gather(*jobs)
|
177 |
-
logger.info(f"embed time: {time.time() - tic}")
|
178 |
-
|
179 |
-
|
180 |
-
def wake_up_endpoint(url):
|
181 |
-
logger.info("Starting up TEI endpoint")
|
182 |
-
n_loop = 0
|
183 |
-
while requests.get(
|
184 |
-
url=url,
|
185 |
-
headers={"Authorization": f"Bearer {HF_TOKEN}"}
|
186 |
-
).status_code != 200:
|
187 |
-
time.sleep(2)
|
188 |
-
n_loop += 1
|
189 |
-
if n_loop > 40:
|
190 |
-
raise TimeoutError("TEI endpoint is unavailable")
|
191 |
-
logger.info("TEI endpoint is up")
|
192 |
-
|
193 |
-
|
194 |
-
def embed_dataset(ds_name):
|
195 |
logger.info("Update detected, embedding is scheduled")
|
196 |
-
wake_up_endpoint(
|
197 |
-
|
198 |
with tempfile.NamedTemporaryFile(mode="a", suffix=".jsonl") as temp_file:
|
199 |
-
asyncio.run(
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
private=embed_config.private,
|
205 |
-
token=
|
206 |
)
|
207 |
|
|
|
208 |
logger.info("Done embedding")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
return {"processed": True}
|
210 |
|
211 |
|
|
|
1 |
import asyncio
|
2 |
import logging
|
|
|
|
|
|
|
|
|
3 |
import tempfile
|
|
|
4 |
|
5 |
from fastapi import FastAPI, Request, BackgroundTasks
|
6 |
from fastapi.responses import HTMLResponse
|
7 |
from fastapi.staticfiles import StaticFiles
|
8 |
from fastapi.templating import Jinja2Templates
|
9 |
+
from contextlib import asynccontextmanager
|
|
|
|
|
10 |
from datasets import Dataset, load_dataset
|
|
|
|
|
11 |
|
12 |
+
from models import chunk_config, embed_config, env_config, WebhookPayload
|
13 |
+
from chunking_utils import Chunker, chunk_generator
|
14 |
+
from embed_utils import wake_up_endpoint, embed_wrapper
|
15 |
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
+
app_state = {}
|
20 |
+
|
21 |
|
22 |
+
@asynccontextmanager
|
23 |
+
async def lifespan(app: FastAPI):
|
24 |
+
app_state["seen_Sha"] = set()
|
25 |
+
yield
|
26 |
+
app_state.clear()
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
28 |
|
29 |
+
app = FastAPI(lifespan=lifespan)
|
|
|
30 |
|
31 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
32 |
templates = Jinja2Templates(directory="templates")
|
|
|
47 |
and payload.event.scope.startswith("repo.content")
|
48 |
and payload.repo.type == "dataset"
|
49 |
# webhook posts multiple requests with the same update, this addresses that
|
50 |
+
and payload.repo.headSha not in app_state["seen_Sha"]
|
51 |
):
|
|
|
52 |
logger.info("Update detected, no action taken")
|
53 |
return {"processed": False}
|
54 |
|
55 |
+
app_state["seen_Sha"].add(payload.repo.headSha)
|
56 |
+
task_queue.add_task(chunk_and_embed, input_ds_name=payload.repo.name)
|
|
|
57 |
|
58 |
return {"processed": True}
|
59 |
|
60 |
|
61 |
+
def chunk(ds_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
logger.info("Update detected, chunking is scheduled")
|
63 |
+
input_ds = load_dataset(ds_name, split="+".join(env_config.input_splits))
|
64 |
chunker = Chunker(
|
65 |
strategy=chunk_config.strategy,
|
66 |
split_seq=chunk_config.split_seq,
|
67 |
chunk_len=chunk_config.chunk_len
|
68 |
)
|
69 |
+
tmp_file = tempfile.NamedTemporaryFile(mode="a", suffix=".jsonl")
|
70 |
dataset = Dataset.from_generator(
|
71 |
chunk_generator,
|
72 |
gen_kwargs={
|
73 |
"input_dataset": input_ds,
|
74 |
+
"chunker": chunker,
|
75 |
+
"tmp_file": tmp_file
|
76 |
}
|
77 |
)
|
78 |
|
79 |
dataset.push_to_hub(
|
80 |
+
env_config.chunked_ds_name,
|
81 |
private=chunk_config.private,
|
82 |
+
token=env_config.hf_token
|
83 |
)
|
84 |
|
85 |
logger.info("Done chunking")
|
86 |
+
return tmp_file
|
|
|
|
|
|
|
|
|
|
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
def embed(chunked_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
logger.info("Update detected, embedding is scheduled")
|
91 |
+
wake_up_endpoint()
|
92 |
+
chunked_ds = Dataset.from_json(chunked_file.name)
|
93 |
with tempfile.NamedTemporaryFile(mode="a", suffix=".jsonl") as temp_file:
|
94 |
+
asyncio.run(embed_wrapper(chunked_ds, temp_file))
|
95 |
|
96 |
+
emb_ds = Dataset.from_json(temp_file.name)
|
97 |
+
emb_ds.push_to_hub(
|
98 |
+
env_config.embed_ds_name,
|
99 |
private=embed_config.private,
|
100 |
+
token=env_config.hf_token
|
101 |
)
|
102 |
|
103 |
+
chunked_file.close()
|
104 |
logger.info("Done embedding")
|
105 |
+
return
|
106 |
+
|
107 |
+
|
108 |
+
def chunk_and_embed(input_ds_name):
|
109 |
+
chunked_tmp_file = chunk(input_ds_name)
|
110 |
+
embed(chunked_tmp_file)
|
111 |
+
|
112 |
return {"processed": True}
|
113 |
|
114 |
|
models.py
CHANGED
@@ -4,6 +4,21 @@ from pydantic import BaseModel
|
|
4 |
from typing import Literal
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
class ChunkConfig(BaseModel):
|
8 |
strategy: Literal["recursive", "sequence", "constant"]
|
9 |
split_seq: str
|
@@ -41,3 +56,7 @@ with open(os.path.join(os.getcwd(), "configs/chunk_config.json")) as c:
|
|
41 |
with open(os.path.join(os.getcwd(), "configs/embed_config.json")) as c:
|
42 |
data = json.load(c)
|
43 |
embed_config = EmbedConfig.model_validate_json(json.dumps(data))
|
|
|
|
|
|
|
|
|
|
4 |
from typing import Literal
|
5 |
|
6 |
|
7 |
+
class EnvConfig(BaseModel):
|
8 |
+
# you token from Settings
|
9 |
+
hf_token: str = os.getenv("HF_TOKEN")
|
10 |
+
# NAME of TEI endpoint
|
11 |
+
tei_name: str = os.getenv("TEI_NAME")
|
12 |
+
# name of chunked dataset
|
13 |
+
chunked_ds_name: str = os.getenv("CHUNKED_DS_NAME")
|
14 |
+
# name of embeddings dataset
|
15 |
+
embed_ds_name: str = os.getenv("EMBED_DS_NAME")
|
16 |
+
# splits of input dataset to process, comma separated
|
17 |
+
input_splits: str = os.getenv("INPUT_SPLITS")
|
18 |
+
# name of column to load from input dataset
|
19 |
+
input_text_col: str = os.getenv("INPUT_TEXT_COL")
|
20 |
+
|
21 |
+
|
22 |
class ChunkConfig(BaseModel):
|
23 |
strategy: Literal["recursive", "sequence", "constant"]
|
24 |
split_seq: str
|
|
|
56 |
with open(os.path.join(os.getcwd(), "configs/embed_config.json")) as c:
|
57 |
data = json.load(c)
|
58 |
embed_config = EmbedConfig.model_validate_json(json.dumps(data))
|
59 |
+
|
60 |
+
|
61 |
+
env_config = EnvConfig()
|
62 |
+
env_config.input_splits = [spl.strip() for spl in env_config.input_splits.split(",") if spl]
|