RECODE_HF_tripGeneration / main copy.py
serJD's picture
ini commit
ce3dfc6
raw
history blame
13.2 kB
import os
import json
import pandas as pd
import copy
from functools import wraps
from specklepy.api.client import SpeckleClient
from tripGenerationFunc import *
import speckle_utils
import data_utils
# get config file:# Parse JSON
current_directory = os.path.dirname(os.path.abspath(__file__))
# Path to the config.json file
config_file_path = os.path.join(current_directory, "config.json")
#def runAll():
speckle_token = os.environ.get("SPECKLE_TOKEN")
# Check if the config.json file exists
if os.path.exists(config_file_path):
# Load the JSON data from config.json
with open(config_file_path, 'r') as f:
config = json.load(f)
# Convert to Python variables with the same names as the keys in the JSON
locals().update(config)
print("varaibles from json")
# Now you can access the variables directly
print(STREAM_ID)
print(BRANCH_NAME_LAND_USES)
print(TARGET_TRIP_RATE)
print(ALPHA_LOW)
print(F_VALUES_MANUAL)
print(distance_matrices_of_interest)
print(redistributeTrips)
print(DISTANCE_BRACKETS)
print(XLS_FILE_PATH)
print("==================")
else:
print("Error: config.json file not found in the current directory.")
xls_file_path = os.path.join(current_directory, XLS_FILE_PATH)
print("full path", xls_file_path)
# fetch speckle data
CLIENT = SpeckleClient(host="https://speckle.xyz/")
CLIENT.authenticate_with_token(token="52566d1047b881764e16ad238356abeb2fc35d8b42")
# get land use stream
stream_land_use = speckle_utils.getSpeckleStream(STREAM_ID,
BRANCH_NAME_LAND_USES,
CLIENT,
commit_id = "")
# navigate to list with speckle objects of interest
stream_data = stream_land_use["@Data"]["@{0}"]
# transform stream_data to dataframe (create a backup copy of this dataframe)
df_speckle_lu = speckle_utils.get_dataframe(stream_data, return_original_df=False)
df_main = df_speckle_lu.copy()
# set index column
df_main = df_main.set_index("ids", drop=False)
# get distance matrix stream
stream_distance_matrice = speckle_utils.getSpeckleStream(STREAM_ID,
BRANCH_NAME_DISTANCE_MATRIX,
CLIENT,
commit_id = "")
# navigate to list with speckle objects of interest
distance_matrices = {}
for distM in stream_distance_matrice["@Data"]['@{0}']:
for kk in distM.__dict__.keys():
try:
if kk.split("+")[1].startswith("distance_matrix"):
distance_matrix_dict = json.loads(distM[kk])
origin_ids = distance_matrix_dict["origin_uuid"]
destination_ids = distance_matrix_dict["destination_uuid"]
distance_matrix = distance_matrix_dict["matrix"]
# Convert the distance matrix to a DataFrame
df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids)
# i want to add the index & colum names to dist_m_csv
#distance_matrices[kk] = dist_m_csv[kk]
distance_matrices[kk] = df_distances
except:
pass
# get metric matrix stream
stream_metric_matrice = speckle_utils.getSpeckleStream(STREAM_ID,
BRANCH_NAME_METRIC_DIST_MATRIX,
CLIENT,
commit_id = "")
# navigate to list with speckle objects of interest
metric_matrices = {}
for distM in stream_metric_matrice["@Data"]['@{0}']:
print(distM.__dict__.keys())
for kk in distM.__dict__.keys():
try:
if kk.split("+")[1].startswith("metric_matrix"):
metric_matrix_dict = json.loads(distM[kk])
origin_ids = metric_matrix_dict["origin_uuid"]
destination_ids = metric_matrix_dict["destination_uuid"]
metric_matrix = metric_matrix_dict["matrix"]
# Convert the distance matrix to a DataFrame
df_metric_dist = pd.DataFrame(metric_matrix, index=origin_ids, columns=destination_ids)
metric_matrices[kk] = df_metric_dist*10 #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
print("metric_matrix_dict", metric_matrix_dict.keys())
except:
pass
metric_matrices = extract_distance_matrices(stream_metric_matrice, metric_matrices_of_interest)
sourceCommits = {
"landuseCommitID": stream_land_use.id,
"distanceMatrixCommitID": stream_distance_matrice.id,
"metricMatrixCommitID": stream_metric_matrice.id
}
# READ XLS FILE ======================================
# Read Excel file into Pandas DataFrame
#Production
# Load Excel file separately
#xls_file_path = os.path.join(current_directory, XLS_FILE_PATH)
if os.path.exists(xls_file_path):
# Production
df_production = pd.read_excel(xls_file_path, sheet_name='Production')
df_production_transposed = df_production.T
df_production = preprocess_dataFrame(df_production, headerRow_idx=2, numRowsStart_idx=3)
df_production_transposed = preprocess_dataFrame(df_production_transposed, headerRow_idx=0, numRowsStart_idx=4,
numColsStart_idx=4, rowNames_idx=2)
# Attraction
df_attraction = pd.read_excel(xls_file_path, sheet_name='Attraction')
df_attraction = preprocess_dataFrame(df_attraction, headerRow_idx=0, numRowsStart_idx=2)
# Distribution_Matrix
df_distributionMatrix = pd.read_excel(xls_file_path, sheet_name='Distribution_Matrix')
df_distributionMatrix = preprocess_dataFrame(df_distributionMatrix, headerRow_idx=0, numRowsStart_idx=2,
numRowsEnd_idx=None, numColsStart_idx=2, numColsEnd_idx=None,
rowNames_idx=0)
# Alphas
df_alphas = pd.read_excel(xls_file_path, sheet_name='Alphas')
df_alphas.columns = df_alphas.iloc[1]
df_alphas = df_alphas.iloc[0, 2:]
# Land use
df_lu = pd.read_excel(xls_file_path, sheet_name='Example_Land_Use')
df_lu = preprocess_dataFrame(df_lu, headerRow_idx=0, numRowsStart_idx=1)
df_lu["nameCombined"] = df_lu.iloc[:, 1].astype(str) + "+" + df_lu.iloc[:, 0].astype(str)
# Distance Matrix
df_distMatrix = pd.read_excel(xls_file_path, sheet_name='Example_Distance_Matrix')
df_distMatrix = preprocess_dataFrame(df_distMatrix, headerRow_idx=0, numRowsStart_idx=1, numRowsEnd_idx=None,
numColsStart_idx=1, numColsEnd_idx=None, rowNames_idx=0)
else:
print("Error: Excel file specified in config.json not found.")
# Land use strucutre =======
# THIS IS THE DISTANCE MATRIX THATS USED DOWN THE ROAD
df_distances_aligned, df_lu_stream_aligned = align_dataframes(distance_matrices[distanceMatrixName], df_main, 'ids')
#Create a df with lanuses
lu_cols = [col for col in df_lu_stream_aligned.columns if col.startswith("lu+")]
df_lu_stream = df_lu_stream_aligned[lu_cols]
# Remove "lu+" from the beginning of column names
df_lu_stream.columns = df_lu_stream.columns.str.lstrip('lu+')
df_lu_stream = df_lu_stream.T
df_lu_stream_t = df_lu_stream.T
df_lu_stream_with_nameLu_column = df_lu_stream.reset_index(drop=False).rename(columns={'index': 'nameLu'})
#---
df_lu_names_xlsx = pd.concat([df_lu.iloc[:, 0:2], df_lu.iloc[:, -1]], axis=1)
df_lu_names_xlsx.index = df_lu_names_xlsx.iloc[:, 1]
column_names = ['nameTripType', 'nameLu', 'nameCombined']
df_lu_names_xlsx.columns = column_names
print(f"df_lu_names_xlsx shape: {df_lu_names_xlsx.shape}")
df_lu_names_xlsx.head()
#--
# Merge DataFrames using an outer join
merged_df = pd.merge(df_lu_stream_with_nameLu_column, df_lu_names_xlsx, on='nameLu', how='outer')
# Get the unique names and their counts from df_lu_names_xlsx
name_counts = df_lu_names_xlsx['nameLu'].value_counts()
#print(name_counts)
# Identify names in df_lu_stream_with_nameLu_column that are not in df_lu_names_xlsx
missing_names = df_lu_stream_with_nameLu_column.loc[~df_lu_stream_with_nameLu_column['nameLu'].isin(df_lu_names_xlsx['nameLu'])]
# Append missing rows to df_lu_stream_with_nameLu_column
df_lu_stream_duplicated = pd.concat([merged_df, missing_names], ignore_index=True)
#--
# Find names in df_lu_names_xlsx that are not in df_lu_stream_with_nameLu_column
missing_names = df_lu_names_xlsx.loc[~df_lu_names_xlsx['nameLu'].isin(df_lu_stream_with_nameLu_column['nameLu'])]
#--
# print existing names (?)
df_lu_names_sorted = df_lu_names_xlsx.sort_values(by='nameLu')
df_lu_stream_duplicated_sorted = df_lu_stream_duplicated.sort_values(by='nameLu')
#--
# Merge DataFrames to get the order of names
merged_order = pd.merge(df_lu_names_xlsx[['nameCombined']], df_lu_stream_duplicated[['nameCombined']], on='nameCombined', how='inner')
# Sort df_lu_stream_duplicated based on the order of names in df_lu_names_xlsx
df_lu_stream_sorted = df_lu_stream_duplicated.sort_values(by='nameCombined', key=lambda x: pd.Categorical(x, categories=merged_order['nameCombined'], ordered=True))
# Reorganize columns
column_order = ['nameTripType', 'nameCombined'] + [col for col in df_lu_stream_sorted.columns if col not in ['nameTripType', 'nameCombined']]
# Create a new DataFrame with the desired column order
df_lu_stream_reordered = df_lu_stream_sorted[column_order]
df_lu_stream_reordered_t = df_lu_stream_reordered.T
#--
df_lu_stream_with_index = df_lu_stream_reordered_t.reset_index(drop=False).rename(columns={'index': 'ids'})
df_lu_stream_with_index.index = df_lu_stream_reordered_t.index
df_lu_num_t_index = df_lu_stream_with_index.iloc[3:]
df_distances_aligned_index = df_distances_aligned.reset_index(drop=False).rename(columns={'index': 'ids'})
df_distances_aligned_index.index = df_distances_aligned.index
df_lu_namesCombined = df_lu_stream_with_index.loc["nameCombined"].iloc[1:]
# Sort df_lu_stream_with_index based on the 'ids' column in df_distances_aligned_index
df_lu_stream_sorted = df_lu_stream_with_index.sort_values(by=['ids'], key=lambda x: pd.Categorical(x, categories=df_distances_aligned_index['ids'], ordered=True))
df_lu_num = df_lu_stream_sorted.T.iloc[1:, :-3]
df_lu_num.index = df_lu_namesCombined
df_distMatrix_speckle = df_distances_aligned
df_attraction_num = df_attraction.reset_index().iloc[:-1, 6:]
# =============================================================================
# TRIP GENERATION
# ATTRACTION & PRODUCTION ======================================================
"""
INPUTS
df_attraction_num
df_lu_num
df_production
df_lu
df_production_transposed
"""
df_attraction_proNode_sum_total = attraction_proNode_full_iter(df_attraction_num, df_lu_num, True)
#Get the sqmProPerson
df_sqmProPerson = df_production.iloc[0, 4:].reset_index()[3]
#Get the trip rate
df_tripRate = copy.deepcopy(df_production) # create a copy ensures df_tripRate doenst point to df_production
df_tripRate.index = df_tripRate.iloc[:, 0] #Set the row names
df_tripRate = df_tripRate.iloc[1:, 2]
#Numerical df from production ==============================================
df_production_num = df_production.iloc[1:, 4:]
df_production_transposed1 = df_production_num.T
df_total_trips_allNodes = production_proNode_total(df_lu,
df_sqmProPerson,
df_tripRate,
df_production_num,
df_production_transposed,
df_lu_num, printSteps=False)
# Convert data types to float
df_total_trips_allNodes = df_total_trips_allNodes.astype(float)
df_tripRate = df_tripRate.astype(float)
df_total_trips_allNodes_sumPerson = df_total_trips_allNodes.div(df_tripRate, axis=0).sum()
df_total_trips_allNodes_sumPerson_proCat = df_total_trips_allNodes.div(df_tripRate, axis=0)
df_total_trips_allNodes_sumPerson_proCat_t = df_total_trips_allNodes_sumPerson_proCat.T
df_total_trips_allNodes_sumPerson_proCat_t_sum = df_total_trips_allNodes_sumPerson_proCat_t.sum()
# get total population
total_population = df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_Res"] + df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_tou"]
# =============================================================================
distance_matrices = extract_distance_matrices(stream_distance_matrice, distance_matrices_of_interest)
metric_matrices_ = extract_distance_matrices(stream_metric_matrice, metric_matrices_of_interest)
metric_matrices = { k:v*10 for k, v in metric_matrices_.items()} # scale (speckle issue)
logs = computeTrips(
df_distributionMatrix,
df_total_trips_allNodes,
df_distMatrix_speckle,
df_alphas,
df_attraction_proNode_sum_total,
df_distances_aligned,
TARGET_TRIP_RATE,
SCALING_FACTOR,
total_population,
df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_Res"],
df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_tou"],
distance_matrices,
metric_matrices,
redistributeTrips,
DISTANCE_BRACKETS,
ALPHA_LOW, ALPHA_MED, ALPHA_HIGH, ALPHA, ALPHA_UNIFORM, F_VALUES_MANUAL,
CLIENT,
STREAM_ID,
TARGET_BRANCH_TM,
sourceCommits
)
print(logs)