sentivity's picture
Update app.py
bf08959 verified
import gradio as gr
import requests
import torch
import torch.nn as nn
import re
import datetime
from transformers import AutoTokenizer
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoConfig
from scipy.special import softmax
# Load tokenizer and sentiment model
MODEL = "cardiffnlp/xlm-twitter-politics-sentiment"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
model.save_pretrained(MODEL)
class ScorePredictor(nn.Module):
def __init__(self, vocab_size, embedding_dim=128, hidden_dim=256, output_dim=1):
super(ScorePredictor, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, input_ids, attention_mask):
embedded = self.embedding(input_ids)
lstm_out, _ = self.lstm(embedded)
final_hidden_state = lstm_out[:, -1, :]
output = self.fc(final_hidden_state)
return self.sigmoid(output)
# Load trained score predictor model
score_model = ScorePredictor(tokenizer.vocab_size)
score_model.load_state_dict(torch.load("score_predictor.pth"))
score_model.eval()
# preprocesses text
def preprocess_text(text):
text = text.lower()
text = re.sub(r'http\S+', '', text)
text = re.sub(r'[^a-zA-Z0-9\s.,!?]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
# predicts sentiment
def predict_sentiment(text):
if not text:
return 0.0
# encoded_input = tokenizer(
# text.split(),
# return_tensors='pt',
# padding=True,
# truncation=True,
# max_length=512
# )
# input_ids, attention_mask = encoded_input["input_ids"], encoded_input["attention_mask"]
# with torch.no_grad():
# score = score_model(input_ids, attention_mask)[0].item()
# k = 20
# midpoint = 0.7
# scaled_score = 1 / (1 + np.exp(-k * (score - midpoint)))
# final_output = scaled_score * 100
# return 1-final_output
text = preprocess_text(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
ranking = np.argsort(scores)
ranking = ranking[::-1]
negative_id = -1
for idx, label in config.id2label.items():
if label.lower() == 'negative':
negative_id = idx
negative_score = scores[negative_id]
return (1-(float(negative_score)))*100
# uses Polygon API to fetch article
def fetch_articles(ticker):
POLYGON_API_KEY = "cMCv7jipVvV4qLBikgzllNmW_isiODRR"
url = f"https://api.polygon.io/v2/reference/news?ticker={ticker}&limit=1&apiKey={POLYGON_API_KEY}"
print(f"[FETCH] {ticker}: {url}")
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
data = response.json()
if data.get("results"):
article = data["results"][0]
title = article.get("title", "")
description = article.get("description", "")
return title + " " + description
return None
# checks specific HTTP errors
except requests.exceptions.HTTPError as http_err:
print(f"[ERROR] HTTP error for {ticker}: {http_err}")
return f"HTTP error when fetching {ticker}: {http_err}"
# catches any other error
except Exception as exc:
print(f"[ERROR] Unexpected error for {ticker}: {exc}")
return f"Error fetching articles for {ticker}: {exc}"
# initialize cache
sentiment_cache = {}
# checks if cache is valid
def is_cache_valid(cached_time, max_age_minutes=10):
if cached_time is None:
return False
now = datetime.datetime.utcnow()
age = now - cached_time
return age.total_seconds() < max_age_minutes * 60
# analyzes the tikcers
def analyze_ticker(user_ticker: str):
user_ticker = user_ticker.upper().strip()
tickers_to_check = list({user_ticker, "SPY"})
results = []
for tk in tickers_to_check:
cached = sentiment_cache.get(tk, {})
if cached and is_cache_valid(cached.get("timestamp")):
print(f"[CACHE] Using cached sentiment for {tk}")
results.append({**cached, "ticker": tk})
continue
print(f"[INFO] Fetching fresh data for {tk}")
article_text = fetch_articles(tk)
if article_text is None:
sentiment_score = None
article_text = f"No news articles found for {tk}."
else:
sentiment_score = predict_sentiment(article_text)
timestamp = datetime.datetime.utcnow()
cache_entry = {
"article": article_text,
"sentiment": sentiment_score,
"timestamp": timestamp,
}
sentiment_cache[tk] = cache_entry
results.append({**cache_entry, "ticker": tk})
# sort so user ticker appears first, SPY second
results.sort(key=lambda x: 0 if x["ticker"] == user_ticker else 1)
return results
def display_sentiment(results):
html = "<h2>Sentiment Analysis</h2><ul>"
for r in results:
ts_str = r["timestamp"].strftime("%Y-%m-%d %H:%M:%S UTC")
score_display = (
f"{r['sentiment']:.2f}"
if r['sentiment'] is not None else
"—"
)
html += (
f"<li><b>{r['ticker']}</b> &nbsp;({ts_str})<br>"
f"{r['article']}<br>"
f"<i>Sentiment score:</i> {score_display}</li>"
)
html += "</ul>"
return html
with gr.Blocks() as demo:
gr.Markdown("# Ticker vs. SPY Sentiment Tracker")
input_box = gr.Textbox(label="Enter any ticker symbol (e.g., AAPL)")
output_html = gr.HTML()
run_btn = gr.Button("Analyze")
def _placeholder(t):
return f"<h3>Gathering latest articles for {t.upper()} and SPY … please wait.</h3>"
run_btn.click(_placeholder, inputs=input_box, outputs=output_html, queue=False).then(
lambda t: display_sentiment(analyze_ticker(t)),
inputs=input_box,
outputs=output_html,
)
demo.launch()