Sentdiario / index.py
thak123's picture
Update index.py
3c0d911 verified
raw
history blame
13.9 kB
import dash
from dash import Dash, html, dcc, callback, Output, Input
from dash import dash_table
import plotly.express as px
from app import app
import pandas as pd
import datetime
import requests
from io import StringIO
from datetime import date
import dash_bootstrap_components as dbc
import plotly.express as px
server = app.server
url='https://drive.google.com/file/d/1NaXOYHQFF5UO5rQr4rn8Lr3bkYMSOq4_/view?usp=sharing'
url='https://drive.google.com/uc?id=' + url.split('/')[-2]
# reading of file
df = pd.read_csv(url)
# filtering the file for more than 4 tokens
df = df[df['Headline'].str.split().str.len().gt(4)]
df['date'] = pd.to_datetime(df['date'])
unique_domains = df['domain_folder_name'].unique()
print(unique_domains)
unique_topics = df['Topic'].unique()
print(unique_topics)
#copying a column
df["Veículos de notícias"] = df["domain_folder_name"]
# df = df.rename(columns={df.columns[4]: "Veículos de notícias"})
df['FinBERT_label'] = df['FinBERT_label'].astype(str)
df['FinBERT_label'].replace({
'3.0': 'positive',
'2.0': 'neutral',
'1.0': 'negative'
}, inplace=True)
counts = df.groupby(['date', 'Topic', 'domain_folder_name', 'FinBERT_label']).size().reset_index(name='count')
counts['count'] = counts['count'].astype('float64')
counts['rolling_mean_counts'] = counts['count'].rolling(window=30, min_periods=2).mean()
df_pos = counts[[x in ['positive'] for x in counts.FinBERT_label]]
df_neu = counts[[x in ['neutral'] for x in counts.FinBERT_label]]
df_neg = counts[[x in ['negative'] for x in counts.FinBERT_label]]
app.layout = dbc.Container([
dbc.Row([ # row 1
dbc.Col([html.H1('Evolução temporal de sentimento em títulos de notícias')],
className="text-center mt-3 mb-1")]),
dbc.Row([ # row 2
dbc.Label("Selecione um período (mm/dd/aaaa):", className="fw-bold")]),
dbc.Row([ # row 3
dcc.DatePickerRange(
id='date-range',
min_date_allowed=df['date'].min().date(),
max_date_allowed=df['date'].max().date(),
initial_visible_month=df['date'].min().date(),
start_date=df['date'].min().date(),
end_date=df['date'].max().date())]),
dbc.Row([ # row 4
dbc.Label("Escolha um tópico:", className="fw-bold")
]),
dbc.Row([ # row 5
dbc.Col(
dcc.Dropdown(
id="topic-selector",
options=[
{"label": topic, "value": topic} for topic in unique_topics
],
value="Imigrantes", # Set the initial value
style={"width": "50%"})
)
]),
dbc.Row([ # row 6
dbc.Col(dcc.Graph(id='line-graph-1'))
]),
dbc.Row([ # row 7 but needs to be updated
dbc.Col(dcc.Graph(id="bar-graph-1"))
]),
# html.Div(id='pie-container-1'),
dbc.Row([ # row 9
dbc.Col(dcc.Graph(id='pie-graph-1'),
)
]),
dbc.Row([ # row 7
dbc.Label("Escolha um site de notícias:", className="fw-bold")
]),
dbc.Row([ # row 8
dbc.Col(
dcc.Dropdown(
id="domain-selector",
options=[
{"label": domain, "value": domain} for domain in unique_domains
],
value="expresso-pt", # Set the initial value
style={"width": "50%"})
)
]),
dbc.Row([ # row 9
dbc.Col(dcc.Graph(id='line-graph-2'),
)
]),
# dbc.Row([ # row 9
# dbc.Col(dcc.Graph(id='line-graph-2'),
# )
# ]),
# dbc.Row([ # row 10
# dbc.Col(dcc.Graph(id='line-graph-3'),
# )
# ]),
# dbc.Row([ # row 11
# dbc.Col(dcc.Graph(id='line-graph-4'),
# )
# ]),
# html.Div(id='pie-container-2'),
dbc.Row([ # row 9
dbc.Col(dcc.Graph(id='pie-graph-2'),
)
]),
dbc.Row([ # row 9
dbc.Col(
dash_table.DataTable(
id='headlines-table',
columns=[
{"name": "Headline", "id": "Headline"},
{"name": "URL", "id": "url"},
{"name": "Date", "id": "date"},
{"name": "Sentiment Label", "id": "FinBERT_label"}
],
style_table={'overflowX': 'auto'},
style_cell={
'textAlign': 'left',
'whiteSpace': 'normal',
'height': 'auto',
'minWidth': '180px', 'width': '180px', 'maxWidth': '180px',
},
page_current= 0,
page_size= 10,
)
)
])
])
# # Create a function to generate pie charts
# def generate_pie_chart(category):
# labels = data[category]['labels']
# values = data[category]['values']
# trace = go.Pie(labels=labels, values=values)
# layout = go.Layout(title=f'Pie Chart - {category}')
# return dcc.Graph(
# figure={
# 'data': [trace],
# 'layout': layout
# }
# )
# callback decorator
@app.callback(
Output('line-graph-1', 'figure'),
Output('bar-graph-1','figure'),
Output('pie-graph-1', 'figure'),
Output('line-graph-2', 'figure'),
Output('pie-graph-2', 'figure'),
Output('headlines-table', 'data'),
Input("topic-selector", "value"),
Input("domain-selector", "value"),
Input('date-range', 'start_date'),
Input('date-range', 'end_date')
)
def update_output(selected_topic, selected_domain, start_date, end_date):
#log
print("topic",selected_topic,"domain",selected_domain,"start", start_date,"date", end_date)
# filter dataframes based on updated data range
mask_1 = ((df["Topic"] == selected_topic) & (df['date'] >= start_date) & (df['date'] <= end_date))
df_filtered = df.loc[mask_1]
print(df_filtered.shape)
if len(df_filtered)>0:
#create line graphs based on filtered dataframes
line_fig_1 = px.line(df_filtered, x="date", y="normalised results",
color='Veículos de notícias', title="O gráfico mostra a evolução temporal de sentimento dos títulos de notícias. Numa escala de -1 (negativo) a 1 (positivo), sendo 0 (neutro).")
# Veículos de notícias
#set x-axis title and y-axis title in line graphs
line_fig_1.update_layout(
xaxis_title='Data',
yaxis_title='Classificação de Sentimento')
#set label format on y-axis in line graphs
line_fig_1.update_xaxes(tickformat="%b %d<br>%Y")
# Bar Graph start
grouped_df = df_filtered.groupby(['date', 'Veículos de notícias']).size().reset_index(name='occurrences')
# Sort DataFrame by 'period' column
grouped_df = grouped_df.sort_values(by='date')
# Create a list of all unique media
all_media = df_filtered['domain_folder_name'].unique()
# Create a date range from Jan/2000 to the last month in the dataset
date_range = pd.date_range(start=df_filtered['date'].min().date(), end=df_filtered['date'].max().date(), freq='MS')
# Create a MultiIndex with all combinations of date_range and all_media
idx = pd.MultiIndex.from_product([date_range, all_media], names=['date', 'Veículos de notícias'])
# Reindex the DataFrame to include all periods and media
grouped_df = grouped_df.set_index(['date', 'Veículos de notícias']).reindex(idx, fill_value=0).reset_index()
bar_fig_1 = px.bar(grouped_df, x='date', y='occurrences', color='Veículos de notícias',
labels={'date': 'Período', 'occurrences': 'Número de notícias', 'Veículos de notícias': 'Portal'},
title='Número de notícias por período de tempo')
bar_fig_1.update_xaxes(tickformat="%b %d<br>%Y")
# Bar Graph ends
# line-fig 2 starts
# filter dataframes based on updated data range
# Filtering data...
df_filtered_2 = counts[(counts['Topic'] == selected_topic) &
(counts['domain_folder_name'] == selected_domain) &
(counts['date'] >= start_date) &
(counts['date'] <= end_date)]
# Create a date range for the selected period
date_range = pd.date_range(start=start_date, end=end_date)
# Create a DataFrame with all possible combinations of classes, topics, and dates
all_combinations = pd.MultiIndex.from_product([['positive', 'neutral', 'negative'],
[selected_topic],
[selected_domain],
date_range],
names=['FinBERT_label', 'Topic', 'domain_folder_name', 'date'])
df_all_combinations = pd.DataFrame(index=all_combinations).reset_index()
# Merge filtered DataFrame with DataFrame of all combinations
merged_df = pd.merge(df_all_combinations, df_filtered_2, on=['FinBERT_label', 'Topic', 'domain_folder_name', 'date'], how='left')
# Fill missing values with zeros
merged_df['count'].fillna(0, inplace=True)
merged_df['rolling_mean_counts'].fillna(0, inplace=True)
# Create line graph...
line_fig_2 = px.line(merged_df, x="date", y="count", color="FinBERT_label",
line_group="FinBERT_label", title="Sentiment Over Time",
labels={"count": "Number of News Articles", "date": "Date"})
# Update layout...
line_fig_2.update_layout(xaxis_title='Date', yaxis_title='Number of News Articles',
xaxis=dict(tickformat="%b %d<br>%Y"))
# line-fig 2 ends
# Map original labels to their translated versions
label_translation = {'positive': 'positivo', 'neutral': 'neutro', 'negative': 'negativo'}
df_filtered['FinBERT_label_transformed'] = df_filtered['FinBERT_label'].map(label_translation)
# Group by FinBERT_label and count occurrences
label_counts_all = df_filtered['FinBERT_label_transformed'].value_counts()
# Calculate percentage of each label
label_percentages_all = (label_counts_all / label_counts_all.sum()) * 100
# Plot general pie chart
pie_chart_1 = px.pie(
values=label_percentages_all,
names=label_percentages_all.index,
title='Distribuição Geral',
color_discrete_sequence=['#039a4d', '#3c03f4', '#ca3919']
)
# Get unique media categories
media_categories = df_filtered['Veículos de notícias'].unique()
# Define colors for each label
label_colors = {'positivo': '#039a4d', 'neutro': '#3c03f4', 'negativo': '#ca3919'}
# Filter DataFrame for current media category
media_df = df_filtered[df_filtered['Veículos de notícias'] == selected_domain]
# Group by FinBERT_label and count occurrences
label_counts = media_df['FinBERT_label_transformed'].value_counts()
# Calculate percentage of each label
label_percentages = (label_counts / label_counts.sum()) * 100
# Plot pie chart
pie_chart_2 = px.pie(
values=label_percentages,
names=label_percentages.index,
title=f'Distribuição para {selected_domain}',
color_discrete_sequence=[label_colors[label] for label in label_percentages.index]
)
# pie_chart_2 = dcc.Graph(figure=fig)
# pie_chart_2 = html.Div(fig,className='four columns')
# Convert FinBERT_label to categorical for better sorting
df_filtered['FinBERT_label'] = pd.Categorical(df_filtered['FinBERT_label'],
categories=['positive', 'neutral', 'negative'],
ordered=True)
# Sort DataFrame by sentiment label and date
data_table_1 = df_filtered.sort_values(by=['FinBERT_label', 'date'])
return line_fig_1, bar_fig_1, pie_chart_1, line_fig_2, pie_chart_2, data_table_1.to_dict('records')
else:
return {'data': []},{'data': []} ,{'data': []} ,{'data': []} , {'data': []}, {'data': []}
# return line_fig_1
# df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')
# app.layout = html.Div([
# html.H1(children='Title of Dash App', style={'textAlign':'center'}),
# dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'),
# dcc.Graph(id='graph-content')
# ])
# @callback(
# Output('graph-content', 'figure'),
# Input('dropdown-selection', 'value')
# )
# def update_graph(value):
# dff = df[df.country==value]
# return px.line(dff, x='year', y='pop')
# # Define callback function for updating the headlines table
# @app.callback(
# Output('headlines-table', 'data'),
# Input("topic-selector", "value"),
# Input("domain-selector", "value"),
# Input('date-range', 'start_date'),
# Input('date-range', 'end_date')
# )
# def update_headlines_table(selected_topic, selected_domain, start_date, end_date):
# # Filtering data...
if __name__ == '__main__':
app.run_server(debug=True)