Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,31 +3,60 @@ from PIL import Image
|
|
| 3 |
import gradio as gr
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
import os
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def load_model(repo_id):
|
| 8 |
download_dir = snapshot_download(repo_id)
|
| 9 |
-
print(download_dir)
|
| 10 |
path = os.path.join(download_dir, "best_int8_openvino_model")
|
| 11 |
-
|
| 12 |
-
detection_model = YOLO(path, task='detect')
|
| 13 |
-
return detection_model
|
| 14 |
|
| 15 |
-
def
|
| 16 |
-
|
| 17 |
-
result = detection_model.predict(source, conf=conf_threshold, iou=iou_threshold)
|
| 18 |
img_bgr = result[0].plot()
|
| 19 |
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # Convert BGR to RGB for PIL
|
| 20 |
return out_pilimg
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
REPO_ID = "sensura/belisha-beacon-zebra-crossing-yoloV8"
|
| 23 |
detection_model = load_model(REPO_ID)
|
| 24 |
|
| 25 |
gr.Interface(
|
| 26 |
fn=predict,
|
| 27 |
inputs=[
|
| 28 |
-
gr.
|
| 29 |
-
gr.Slider(
|
| 30 |
-
gr.Slider(
|
| 31 |
],
|
| 32 |
-
outputs=gr.Image(type="pil", label="
|
| 33 |
).launch(share=True)
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
import os
|
| 6 |
+
import tempfile
|
| 7 |
+
import cv2
|
| 8 |
|
| 9 |
def load_model(repo_id):
|
| 10 |
download_dir = snapshot_download(repo_id)
|
|
|
|
| 11 |
path = os.path.join(download_dir, "best_int8_openvino_model")
|
| 12 |
+
return YOLO(path, task='detect')
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
def predict_image(pilimg, conf_threshold, iou_threshold):
|
| 15 |
+
result = detection_model.predict(pilimg, conf=conf_threshold, iou=iou_threshold)
|
|
|
|
| 16 |
img_bgr = result[0].plot()
|
| 17 |
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # Convert BGR to RGB for PIL
|
| 18 |
return out_pilimg
|
| 19 |
|
| 20 |
+
def predict_video(video_path, conf_threshold, iou_threshold):
|
| 21 |
+
cap = cv2.VideoCapture(video_path)
|
| 22 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 23 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 24 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 25 |
+
|
| 26 |
+
out_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
| 27 |
+
out_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
| 28 |
+
|
| 29 |
+
while cap.isOpened():
|
| 30 |
+
ret, frame = cap.read()
|
| 31 |
+
if not ret:
|
| 32 |
+
break
|
| 33 |
+
result = detection_model.predict(frame, conf=conf_threshold, iou=iou_threshold)
|
| 34 |
+
annotated = result[0].plot()
|
| 35 |
+
out_writer.write(annotated)
|
| 36 |
+
|
| 37 |
+
cap.release()
|
| 38 |
+
out_writer.release()
|
| 39 |
+
return out_path
|
| 40 |
+
|
| 41 |
+
def predict(file, conf_threshold, iou_threshold):
|
| 42 |
+
ext = os.path.splitext(file.name)[1].lower()
|
| 43 |
+
if ext in ['.jpg', '.jpeg', '.png']:
|
| 44 |
+
img = Image.open(file).convert("RGB")
|
| 45 |
+
return predict_image(img, conf_threshold, iou_threshold)
|
| 46 |
+
elif ext in ['.mp4', '.mov', '.avi']:
|
| 47 |
+
return predict_video(file.name, conf_threshold, iou_threshold)
|
| 48 |
+
else:
|
| 49 |
+
return "Unsupported file type. Please upload an image or video."
|
| 50 |
+
|
| 51 |
REPO_ID = "sensura/belisha-beacon-zebra-crossing-yoloV8"
|
| 52 |
detection_model = load_model(REPO_ID)
|
| 53 |
|
| 54 |
gr.Interface(
|
| 55 |
fn=predict,
|
| 56 |
inputs=[
|
| 57 |
+
gr.File(label="Upload Image or Video"),
|
| 58 |
+
gr.Slider(0.1, 1.0, 0.5, step=0.05, label="Confidence Threshold"),
|
| 59 |
+
gr.Slider(0.1, 1.0, 0.6, step=0.05, label="IoU Threshold")
|
| 60 |
],
|
| 61 |
+
outputs=gr.outputs.Image(type="pil", label="Detected Image or Video") | gr.outputs.Video(label="Detected Video")
|
| 62 |
).launch(share=True)
|