Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,62 +5,90 @@ from huggingface_hub import snapshot_download
|
|
| 5 |
import os
|
| 6 |
import tempfile
|
| 7 |
import cv2
|
|
|
|
|
|
|
| 8 |
|
| 9 |
def load_model(repo_id):
|
| 10 |
download_dir = snapshot_download(repo_id)
|
| 11 |
path = os.path.join(download_dir, "best_int8_openvino_model")
|
| 12 |
return YOLO(path, task='detect')
|
| 13 |
|
| 14 |
-
def
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
while cap.isOpened():
|
| 34 |
-
ret, frame = cap.read()
|
| 35 |
-
if not ret:
|
| 36 |
-
break
|
| 37 |
-
result = detection_model.predict(frame, conf=conf_threshold, iou=iou_threshold)
|
| 38 |
-
annotated = result[0].plot()
|
| 39 |
-
out_writer.write(annotated)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
if ext in ['.jpg', '.jpeg', '.png']:
|
| 48 |
-
img = Image.open(file).convert("RGB")
|
| 49 |
-
return predict_image(img, conf_threshold, iou_threshold)
|
| 50 |
-
elif ext in ['.mp4', '.mov', '.avi']:
|
| 51 |
-
return predict_video(file.name, conf_threshold, iou_threshold)
|
| 52 |
-
else:
|
| 53 |
-
return "Unsupported file type. Please upload an image or video."
|
| 54 |
|
| 55 |
REPO_ID = "sensura/belisha-beacon-zebra-crossing-yoloV8"
|
| 56 |
detection_model = load_model(REPO_ID)
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
fn=predict,
|
| 60 |
inputs=[
|
| 61 |
-
gr.File(label="Upload Image or Video"),
|
| 62 |
gr.Slider(0.1, 1.0, 0.5, step=0.05, label="Confidence Threshold"),
|
| 63 |
gr.Slider(0.1, 1.0, 0.6, step=0.05, label="IoU Threshold")
|
| 64 |
],
|
| 65 |
-
outputs=
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import os
|
| 6 |
import tempfile
|
| 7 |
import cv2
|
| 8 |
+
import zipfile
|
| 9 |
+
import shutil
|
| 10 |
|
| 11 |
def load_model(repo_id):
|
| 12 |
download_dir = snapshot_download(repo_id)
|
| 13 |
path = os.path.join(download_dir, "best_int8_openvino_model")
|
| 14 |
return YOLO(path, task='detect')
|
| 15 |
|
| 16 |
+
def predict(files, conf_threshold, iou_threshold):
|
| 17 |
+
if len(files) == 1:
|
| 18 |
+
ext = os.path.splitext(files[0].name)[1].lower()
|
| 19 |
+
if ext in ['.jpg', '.jpeg', '.png']:
|
| 20 |
+
img = Image.open(files[0]).convert("RGB")
|
| 21 |
+
result = detection_model.predict(img, conf=conf_threshold, iou=iou_threshold)
|
| 22 |
+
img_bgr = result[0].plot()
|
| 23 |
+
out_img = Image.fromarray(img_bgr[..., ::-1])
|
| 24 |
+
tmp_path = tempfile.NamedTemporaryFile(suffix=".png", delete=False).name
|
| 25 |
+
out_img.save(tmp_path)
|
| 26 |
+
return tmp_path
|
| 27 |
+
elif ext in ['.mp4', '.mov', '.avi']:
|
| 28 |
+
cap = cv2.VideoCapture(files[0].name)
|
| 29 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 30 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 31 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 32 |
+
out_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
| 33 |
+
out_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
| 34 |
|
| 35 |
+
while cap.isOpened():
|
| 36 |
+
ret, frame = cap.read()
|
| 37 |
+
if not ret:
|
| 38 |
+
break
|
| 39 |
+
result = detection_model.predict(frame, conf=conf_threshold, iou=iou_threshold)
|
| 40 |
+
annotated = result[0].plot()
|
| 41 |
+
out_writer.write(annotated)
|
| 42 |
|
| 43 |
+
cap.release()
|
| 44 |
+
out_writer.release()
|
| 45 |
+
return out_path
|
| 46 |
+
else:
|
| 47 |
+
return "Unsupported file type."
|
| 48 |
+
else:
|
| 49 |
+
output_dir = tempfile.mkdtemp()
|
| 50 |
+
annotated_images = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
for file in files:
|
| 53 |
+
try:
|
| 54 |
+
img = Image.open(file).convert("RGB")
|
| 55 |
+
result = detection_model.predict(img, conf=conf_threshold, iou=iou_threshold)
|
| 56 |
+
img_bgr = result[0].plot()
|
| 57 |
+
out_img = Image.fromarray(img_bgr[..., ::-1])
|
| 58 |
+
out_path = os.path.join(output_dir, os.path.basename(file.name))
|
| 59 |
+
out_img.save(out_path)
|
| 60 |
+
annotated_images.append(out_img)
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"Failed to process {file.name}: {e}")
|
| 63 |
|
| 64 |
+
zip_path = shutil.make_archive(output_dir, 'zip', output_dir)
|
| 65 |
+
return annotated_images, zip_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
REPO_ID = "sensura/belisha-beacon-zebra-crossing-yoloV8"
|
| 68 |
detection_model = load_model(REPO_ID)
|
| 69 |
|
| 70 |
+
def dynamic_output(file_list):
|
| 71 |
+
if len(file_list) == 1:
|
| 72 |
+
ext = os.path.splitext(file_list[0].name)[1].lower()
|
| 73 |
+
if ext in ['.jpg', '.jpeg', '.png']:
|
| 74 |
+
return gr.Image(type="filepath", label="Annotated Image")
|
| 75 |
+
elif ext in ['.mp4', '.mov', '.avi']:
|
| 76 |
+
return gr.Video(label="Annotated Video")
|
| 77 |
+
else:
|
| 78 |
+
return [
|
| 79 |
+
gr.Gallery(label="Annotated Images").style(grid=3, height="auto"),
|
| 80 |
+
gr.File(label="Download All Annotated Images (ZIP)")
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
interface = gr.Interface(
|
| 84 |
fn=predict,
|
| 85 |
inputs=[
|
| 86 |
+
gr.File(file_types=["image", "video"], file_count="multiple", label="Upload Image(s) or Video"),
|
| 87 |
gr.Slider(0.1, 1.0, 0.5, step=0.05, label="Confidence Threshold"),
|
| 88 |
gr.Slider(0.1, 1.0, 0.6, step=0.05, label="IoU Threshold")
|
| 89 |
],
|
| 90 |
+
outputs=dynamic_output,
|
| 91 |
+
live=False
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
interface.launch(share=True)
|