nijigenka / face_detector.py
senior-sigan's picture
init project
424d90e
from typing import Iterator, List, Tuple
import dlib
import numpy as np
import PIL.Image
import scipy.ndimage
class FaceAligner(object):
def __init__(
self,
shape_predictor_path: str = 'shape_predictor_68_face_landmarks.dat',
image_size: int = 512,
) -> None:
self.image_size = image_size
self.detector = dlib.get_frontal_face_detector()
self.shape_predictor = dlib.shape_predictor(shape_predictor_path)
def align(self, image: PIL.Image.Image) -> List[PIL.Image.Image]:
landmarks = self.get_landmarks(image)
return [image_align(
image,
face_landmarks,
output_size=self.image_size,
transform_size=self.image_size * 2,
) for face_landmarks in landmarks]
def get_landmarks(
self,
image: PIL.Image.Image,
) -> Iterator[List[Tuple[int, int]]]:
img = np.asarray(image.convert('L'))
dets = self.detector(img, 1)
for detection in dets:
try:
parts = self.shape_predictor(img, detection).parts()
face_landmarks = [(point.x, point.y) for point in parts]
yield face_landmarks
except:
print("Exception in get_landmarks()!")
def image_align(
img: PIL.Image.Image,
face_landmarks: List[Tuple[int, int]],
output_size: int = 1024,
transform_size: int = 4096,
enable_padding: bool = True,
x_scale: float = 1,
y_scale: float = 1,
em_scale: float = 0.1,
) -> PIL.Image.Image:
# Align function from FFHQ dataset pre-processing step
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
lm = np.array(face_landmarks)
lm_chin = lm[0: 17] # left-right
lm_eyebrow_left = lm[17: 22] # left-right
lm_eyebrow_right = lm[22: 27] # left-right
lm_nose = lm[27: 31] # top-down
lm_nostrils = lm[31: 36] # top-down
lm_eye_left = lm[36: 42] # left-clockwise
lm_eye_right = lm[42: 48] # left-clockwise
lm_mouth_outer = lm[48: 60] # left-clockwise
lm_mouth_inner = lm[60: 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
x *= x_scale
y = np.flipud(x) * [-y_scale, y_scale]
c = eye_avg + eye_to_mouth * em_scale
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)),
int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(
np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0),
min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(
np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] -
img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img),
((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(
w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img,
[blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = np.uint8(np.clip(np.rint(img), 0, 255))
img = PIL.Image.fromarray(img, 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size),
PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
return img