Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -19,11 +19,160 @@ def extract_text_from_html(html):
|
|
19 |
text = text.replace(' ', ' ').replace('&', '&').replace('<', '<').replace('>', '>')
|
20 |
return text.strip()
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Function to fetch deals from DealsFinders.com (from shopping_assistant.py)
|
23 |
-
def fetch_deals_data(url="https://www.dealsfinders.com/wp-json/wp/v2/posts", num_pages=2, per_page=100):
|
24 |
"""
|
25 |
-
Fetch deals data exclusively from the DealsFinders API
|
26 |
"""
|
|
|
|
|
|
|
|
|
|
|
27 |
all_deals = []
|
28 |
|
29 |
# Fetch from the DealsFinders API
|
@@ -46,10 +195,17 @@ def fetch_deals_data(url="https://www.dealsfinders.com/wp-json/wp/v2/posts", num
|
|
46 |
break
|
47 |
else:
|
48 |
print(f"Failed to fetch page {page} from DealsFinders API: {response.status_code}")
|
49 |
-
|
|
|
50 |
except Exception as e:
|
51 |
print(f"Error fetching page {page} from DealsFinders API: {str(e)}")
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
return all_deals
|
55 |
|
@@ -144,9 +300,99 @@ except Exception as e:
|
|
144 |
# Not using recommended models
|
145 |
using_recommended_models = False
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
# Global variable to store deals data
|
148 |
deals_cache = None
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
def classify_text(text, fetch_deals=True):
|
151 |
"""
|
152 |
Classify the text using the model and fetch relevant deals
|
@@ -202,7 +448,8 @@ def classify_text(text, fetch_deals=True):
|
|
202 |
try:
|
203 |
# Fetch deals data if not already cached
|
204 |
if deals_cache is None:
|
205 |
-
|
|
|
206 |
deals_cache = process_deals_data(deals_data)
|
207 |
|
208 |
# Using MPNet for semantic search if available
|
@@ -227,19 +474,30 @@ def classify_text(text, fetch_deals=True):
|
|
227 |
# Extract the relevant deals
|
228 |
relevant_deals = [deals_cache[idx] for idx in top_indices]
|
229 |
else:
|
230 |
-
#
|
231 |
query_terms = text.lower().split()
|
232 |
expanded_terms = list(query_terms)
|
233 |
|
234 |
-
#
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
# Score deals based on relevance to the query
|
245 |
scored_deals = []
|
@@ -269,6 +527,15 @@ def classify_text(text, fetch_deals=True):
|
|
269 |
if term in excerpt:
|
270 |
score += 1
|
271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
# Add to scored deals if it has any relevance
|
273 |
if score > 0:
|
274 |
scored_deals.append((deal, score))
|
|
|
19 |
text = text.replace(' ', ' ').replace('&', '&').replace('<', '<').replace('>', '>')
|
20 |
return text.strip()
|
21 |
|
22 |
+
# Sample deals data to use as fallback
|
23 |
+
SAMPLE_DEALS = [
|
24 |
+
{
|
25 |
+
"id": 1,
|
26 |
+
"title": {
|
27 |
+
"rendered": "Apple AirPods Pro (2nd Generation) - 20% Off"
|
28 |
+
},
|
29 |
+
"link": "https://www.example.com/deals/airpods-pro",
|
30 |
+
"date": "2025-02-25T10:00:00",
|
31 |
+
"content": {
|
32 |
+
"rendered": "<p>Get the latest Apple AirPods Pro (2nd Generation) for 20% off the regular price. These wireless earbuds feature active noise cancellation, transparency mode, and spatial audio with dynamic head tracking.</p><p>Regular price: $249.99</p><p>Deal price: $199.99</p><p>You save: $50.00</p>"
|
33 |
+
},
|
34 |
+
"excerpt": {
|
35 |
+
"rendered": "<p>Apple AirPods Pro (2nd Generation) with active noise cancellation and transparency mode. Now 20% off - only $199.99!</p>"
|
36 |
+
}
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"id": 2,
|
40 |
+
"title": {
|
41 |
+
"rendered": "Samsung 65\" QLED 4K Smart TV - $300 Off"
|
42 |
+
},
|
43 |
+
"link": "https://www.example.com/deals/samsung-qled-tv",
|
44 |
+
"date": "2025-02-26T09:30:00",
|
45 |
+
"content": {
|
46 |
+
"rendered": "<p>Upgrade your home entertainment with this Samsung 65\" QLED 4K Smart TV. Features Quantum HDR, Motion Xcelerator Turbo+, and Object Tracking Sound for an immersive viewing experience.</p><p>Regular price: $1,299.99</p><p>Deal price: $999.99</p><p>You save: $300.00</p>"
|
47 |
+
},
|
48 |
+
"excerpt": {
|
49 |
+
"rendered": "<p>Samsung 65\" QLED 4K Smart TV with Quantum HDR and Object Tracking Sound. Save $300 - now only $999.99!</p>"
|
50 |
+
}
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"id": 3,
|
54 |
+
"title": {
|
55 |
+
"rendered": "Sony WH-1000XM5 Wireless Headphones - 25% Off"
|
56 |
+
},
|
57 |
+
"link": "https://www.example.com/deals/sony-wh1000xm5",
|
58 |
+
"date": "2025-02-26T14:15:00",
|
59 |
+
"content": {
|
60 |
+
"rendered": "<p>Experience industry-leading noise cancellation with the Sony WH-1000XM5 wireless headphones. Features 30-hour battery life, quick charging, and exceptional sound quality with the new Integrated Processor V1.</p><p>Regular price: $399.99</p><p>Deal price: $299.99</p><p>You save: $100.00</p>"
|
61 |
+
},
|
62 |
+
"excerpt": {
|
63 |
+
"rendered": "<p>Sony WH-1000XM5 wireless headphones with industry-leading noise cancellation and 30-hour battery life. Now 25% off at $299.99!</p>"
|
64 |
+
}
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"id": 4,
|
68 |
+
"title": {
|
69 |
+
"rendered": "Bose QuietComfort Ultra Headphones - 20% Off"
|
70 |
+
},
|
71 |
+
"link": "https://www.example.com/deals/bose-quietcomfort-ultra",
|
72 |
+
"date": "2025-02-25T15:30:00",
|
73 |
+
"content": {
|
74 |
+
"rendered": "<p>Experience the ultimate in noise cancellation with Bose QuietComfort Ultra headphones. Features spatial audio, custom EQ, and up to 24 hours of battery life.</p><p>Regular price: $429.99</p><p>Deal price: $343.99</p><p>You save: $86.00</p>"
|
75 |
+
},
|
76 |
+
"excerpt": {
|
77 |
+
"rendered": "<p>Bose QuietComfort Ultra headphones with advanced noise cancellation and spatial audio. Now 20% off at $343.99!</p>"
|
78 |
+
}
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"id": 5,
|
82 |
+
"title": {
|
83 |
+
"rendered": "Beats Studio Pro Wireless Headphones - 40% Off"
|
84 |
+
},
|
85 |
+
"link": "https://www.example.com/deals/beats-studio-pro",
|
86 |
+
"date": "2025-02-26T16:30:00",
|
87 |
+
"content": {
|
88 |
+
"rendered": "<p>The Beats Studio Pro wireless headphones deliver premium sound with active noise cancellation, transparency mode, and up to 40 hours of battery life.</p><p>Regular price: $349.99</p><p>Deal price: $209.99</p><p>You save: $140.00</p>"
|
89 |
+
},
|
90 |
+
"excerpt": {
|
91 |
+
"rendered": "<p>Beats Studio Pro wireless headphones with active noise cancellation and 40-hour battery life. Now 40% off at $209.99!</p>"
|
92 |
+
}
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"id": 6,
|
96 |
+
"title": {
|
97 |
+
"rendered": "Dyson V12 Detect Slim Cordless Vacuum - $150 Off"
|
98 |
+
},
|
99 |
+
"link": "https://www.example.com/deals/dyson-v12",
|
100 |
+
"date": "2025-02-27T08:45:00",
|
101 |
+
"content": {
|
102 |
+
"rendered": "<p>The Dyson V12 Detect Slim cordless vacuum features a laser that reveals microscopic dust, an LCD screen that displays particle counts, and powerful suction for deep cleaning.</p><p>Regular price: $649.99</p><p>Deal price: $499.99</p><p>You save: $150.00</p>"
|
103 |
+
},
|
104 |
+
"excerpt": {
|
105 |
+
"rendered": "<p>Dyson V12 Detect Slim cordless vacuum with laser dust detection and powerful suction. Save $150 - now only $499.99!</p>"
|
106 |
+
}
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"id": 7,
|
110 |
+
"title": {
|
111 |
+
"rendered": "Nintendo Switch OLED Model - Bundle Deal"
|
112 |
+
},
|
113 |
+
"link": "https://www.example.com/deals/nintendo-switch-oled",
|
114 |
+
"date": "2025-02-27T11:20:00",
|
115 |
+
"content": {
|
116 |
+
"rendered": "<p>Get the Nintendo Switch OLED Model with a vibrant 7-inch OLED screen, plus two games and a carrying case. The perfect gaming package for home or on-the-go play.</p><p>Regular price: $439.99</p><p>Deal price: $379.99</p><p>You save: $60.00</p>"
|
117 |
+
},
|
118 |
+
"excerpt": {
|
119 |
+
"rendered": "<p>Nintendo Switch OLED Model bundle with two games and carrying case. Special bundle price of $379.99!</p>"
|
120 |
+
}
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"id": 8,
|
124 |
+
"title": {
|
125 |
+
"rendered": "MacBook Air M3 - $200 Off"
|
126 |
+
},
|
127 |
+
"link": "https://www.example.com/deals/macbook-air-m3",
|
128 |
+
"date": "2025-02-26T10:45:00",
|
129 |
+
"content": {
|
130 |
+
"rendered": "<p>The latest MacBook Air with M3 chip offers incredible performance and battery life in an ultra-thin design. Features a 13.6-inch Liquid Retina display, 8GB RAM, and 256GB SSD storage.</p><p>Regular price: $1,099.99</p><p>Deal price: $899.99</p><p>You save: $200.00</p>"
|
131 |
+
},
|
132 |
+
"excerpt": {
|
133 |
+
"rendered": "<p>MacBook Air with M3 chip, 13.6-inch Liquid Retina display, and all-day battery life. Save $200 - now only $899.99!</p>"
|
134 |
+
}
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"id": 9,
|
138 |
+
"title": {
|
139 |
+
"rendered": "Kindle Paperwhite Signature Edition - 30% Off"
|
140 |
+
},
|
141 |
+
"link": "https://www.example.com/deals/kindle-paperwhite",
|
142 |
+
"date": "2025-02-27T09:15:00",
|
143 |
+
"content": {
|
144 |
+
"rendered": "<p>The Kindle Paperwhite Signature Edition features a 6.8-inch display, wireless charging, auto-adjusting front light, and 32GB storage. Perfect for reading anywhere, anytime.</p><p>Regular price: $189.99</p><p>Deal price: $132.99</p><p>You save: $57.00</p>"
|
145 |
+
},
|
146 |
+
"excerpt": {
|
147 |
+
"rendered": "<p>Kindle Paperwhite Signature Edition with 6.8-inch display, wireless charging, and 32GB storage. Now 30% off at $132.99!</p>"
|
148 |
+
}
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"id": 10,
|
152 |
+
"title": {
|
153 |
+
"rendered": "LG C3 65\" OLED 4K Smart TV - $500 Off"
|
154 |
+
},
|
155 |
+
"link": "https://www.example.com/deals/lg-c3-oled",
|
156 |
+
"date": "2025-02-25T13:00:00",
|
157 |
+
"content": {
|
158 |
+
"rendered": "<p>Experience stunning picture quality with the LG C3 65\" OLED 4K Smart TV. Features self-lit OLED pixels, Dolby Vision, Dolby Atmos, and NVIDIA G-SYNC for gaming.</p><p>Regular price: $1,799.99</p><p>Deal price: $1,299.99</p><p>You save: $500.00</p>"
|
159 |
+
},
|
160 |
+
"excerpt": {
|
161 |
+
"rendered": "<p>LG C3 65\" OLED 4K Smart TV with self-lit pixels and Dolby Vision. Save $500 - now only $1,299.99!</p>"
|
162 |
+
}
|
163 |
+
}
|
164 |
+
]
|
165 |
+
|
166 |
# Function to fetch deals from DealsFinders.com (from shopping_assistant.py)
|
167 |
+
def fetch_deals_data(url="https://www.dealsfinders.com/wp-json/wp/v2/posts", num_pages=2, per_page=100, use_sample_data=False):
|
168 |
"""
|
169 |
+
Fetch deals data exclusively from the DealsFinders API or use sample data
|
170 |
"""
|
171 |
+
# If use_sample_data is True, return the sample deals
|
172 |
+
if use_sample_data:
|
173 |
+
print("Using sample deals data")
|
174 |
+
return SAMPLE_DEALS
|
175 |
+
|
176 |
all_deals = []
|
177 |
|
178 |
# Fetch from the DealsFinders API
|
|
|
195 |
break
|
196 |
else:
|
197 |
print(f"Failed to fetch page {page} from DealsFinders API: {response.status_code}")
|
198 |
+
print("Falling back to sample deals data")
|
199 |
+
return SAMPLE_DEALS
|
200 |
except Exception as e:
|
201 |
print(f"Error fetching page {page} from DealsFinders API: {str(e)}")
|
202 |
+
print("Falling back to sample deals data")
|
203 |
+
return SAMPLE_DEALS
|
204 |
+
|
205 |
+
# If no deals were fetched, use sample data
|
206 |
+
if not all_deals:
|
207 |
+
print("No deals fetched from API. Using sample deals data")
|
208 |
+
return SAMPLE_DEALS
|
209 |
|
210 |
return all_deals
|
211 |
|
|
|
300 |
# Not using recommended models
|
301 |
using_recommended_models = False
|
302 |
|
303 |
+
# File path for storing deals data locally
|
304 |
+
DEALS_DATA_PATH = "deals_data.json"
|
305 |
+
|
306 |
+
# Function to fetch and save a large number of deals
|
307 |
+
def fetch_and_save_deals(max_deals=10000, per_page=100):
|
308 |
+
"""
|
309 |
+
Fetch a large number of deals and save them to a local file
|
310 |
+
"""
|
311 |
+
print(f"Fetching up to {max_deals} deals...")
|
312 |
+
|
313 |
+
all_deals = []
|
314 |
+
num_pages = min(max_deals // per_page + (1 if max_deals % per_page > 0 else 0), 100) # Limit to 100 pages max
|
315 |
+
|
316 |
+
# Fetch from the DealsFinders API
|
317 |
+
for page in range(1, num_pages + 1):
|
318 |
+
try:
|
319 |
+
# Add a user agent to avoid being blocked
|
320 |
+
headers = {
|
321 |
+
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36'
|
322 |
+
}
|
323 |
+
response = requests.get(f"https://www.dealsfinders.com/wp-json/wp/v2/posts?page={page}&per_page={per_page}", headers=headers)
|
324 |
+
|
325 |
+
if response.status_code == 200:
|
326 |
+
deals = response.json()
|
327 |
+
all_deals.extend(deals)
|
328 |
+
print(f"Fetched page {page} with {len(deals)} deals from DealsFinders API")
|
329 |
+
|
330 |
+
# If we get fewer deals than requested, we've reached the end
|
331 |
+
if len(deals) < per_page:
|
332 |
+
print(f"Reached the end of available deals at page {page}")
|
333 |
+
break
|
334 |
+
|
335 |
+
# If we've reached the maximum number of deals, stop
|
336 |
+
if len(all_deals) >= max_deals:
|
337 |
+
all_deals = all_deals[:max_deals] # Trim to max_deals
|
338 |
+
print(f"Reached the maximum number of deals ({max_deals})")
|
339 |
+
break
|
340 |
+
else:
|
341 |
+
print(f"Failed to fetch page {page} from DealsFinders API: {response.status_code}")
|
342 |
+
break
|
343 |
+
except Exception as e:
|
344 |
+
print(f"Error fetching page {page} from DealsFinders API: {str(e)}")
|
345 |
+
break
|
346 |
+
|
347 |
+
# Process the deals
|
348 |
+
processed_deals = process_deals_data(all_deals)
|
349 |
+
|
350 |
+
# Save the deals to a local file
|
351 |
+
try:
|
352 |
+
with open(DEALS_DATA_PATH, "w") as f:
|
353 |
+
json.dump(processed_deals, f)
|
354 |
+
print(f"Saved {len(processed_deals)} deals to {DEALS_DATA_PATH}")
|
355 |
+
return processed_deals
|
356 |
+
except Exception as e:
|
357 |
+
print(f"Error saving deals to file: {str(e)}")
|
358 |
+
return processed_deals
|
359 |
+
|
360 |
+
# Function to load deals from the local file
|
361 |
+
def load_deals_from_file():
|
362 |
+
"""
|
363 |
+
Load deals from the local file
|
364 |
+
"""
|
365 |
+
try:
|
366 |
+
if os.path.exists(DEALS_DATA_PATH):
|
367 |
+
with open(DEALS_DATA_PATH, "r") as f:
|
368 |
+
deals = json.load(f)
|
369 |
+
print(f"Loaded {len(deals)} deals from {DEALS_DATA_PATH}")
|
370 |
+
return deals
|
371 |
+
else:
|
372 |
+
print(f"Deals file {DEALS_DATA_PATH} does not exist")
|
373 |
+
return None
|
374 |
+
except Exception as e:
|
375 |
+
print(f"Error loading deals from file: {str(e)}")
|
376 |
+
return None
|
377 |
+
|
378 |
# Global variable to store deals data
|
379 |
deals_cache = None
|
380 |
|
381 |
+
# Try to fetch and save deals on startup
|
382 |
+
try:
|
383 |
+
# First try to load from file
|
384 |
+
deals_cache = load_deals_from_file()
|
385 |
+
|
386 |
+
# If file doesn't exist or is empty, fetch and save
|
387 |
+
if deals_cache is None or len(deals_cache) == 0:
|
388 |
+
print("No deals found in local file. Fetching deals...")
|
389 |
+
deals_cache = fetch_and_save_deals()
|
390 |
+
|
391 |
+
print(f"Initialized with {len(deals_cache) if deals_cache else 0} deals")
|
392 |
+
except Exception as e:
|
393 |
+
print(f"Error initializing deals cache: {str(e)}")
|
394 |
+
deals_cache = None
|
395 |
+
|
396 |
def classify_text(text, fetch_deals=True):
|
397 |
"""
|
398 |
Classify the text using the model and fetch relevant deals
|
|
|
448 |
try:
|
449 |
# Fetch deals data if not already cached
|
450 |
if deals_cache is None:
|
451 |
+
# Use sample data by default in Hugging Face space environment
|
452 |
+
deals_data = fetch_deals_data(num_pages=2, use_sample_data=True) # Use sample data for reliability
|
453 |
deals_cache = process_deals_data(deals_data)
|
454 |
|
455 |
# Using MPNet for semantic search if available
|
|
|
474 |
# Extract the relevant deals
|
475 |
relevant_deals = [deals_cache[idx] for idx in top_indices]
|
476 |
else:
|
477 |
+
# Improved keyword-based search with category awareness
|
478 |
query_terms = text.lower().split()
|
479 |
expanded_terms = list(query_terms)
|
480 |
|
481 |
+
# Get the top category from the classification results
|
482 |
+
top_category = top_categories[0][0] if top_categories else None
|
483 |
+
|
484 |
+
# Add category-specific terms
|
485 |
+
if top_category == "electronics":
|
486 |
+
expanded_terms.extend(['electronic', 'device', 'gadget', 'tech', 'technology'])
|
487 |
+
if any(term in text.lower() for term in ['headphone', 'headphones']):
|
488 |
+
expanded_terms.extend(['earbuds', 'earphones', 'earpods', 'airpods', 'audio', 'bluetooth', 'wireless'])
|
489 |
+
elif any(term in text.lower() for term in ['laptop', 'computer']):
|
490 |
+
expanded_terms.extend(['notebook', 'macbook', 'chromebook', 'pc'])
|
491 |
+
elif any(term in text.lower() for term in ['tv', 'television']):
|
492 |
+
expanded_terms.extend(['smart tv', 'roku', 'streaming'])
|
493 |
+
elif top_category == "kitchen":
|
494 |
+
expanded_terms.extend(['appliance', 'cookware', 'utensil', 'blender', 'mixer', 'toaster', 'microwave', 'oven'])
|
495 |
+
elif top_category == "home":
|
496 |
+
expanded_terms.extend(['furniture', 'decor', 'decoration', 'bedding', 'household'])
|
497 |
+
elif top_category == "clothing":
|
498 |
+
expanded_terms.extend(['clothes', 'shirt', 'pants', 'dress', 'fashion', 'wear', 'apparel'])
|
499 |
+
elif top_category == "toys":
|
500 |
+
expanded_terms.extend(['game', 'play', 'children', 'kid', 'kids', 'fun'])
|
501 |
|
502 |
# Score deals based on relevance to the query
|
503 |
scored_deals = []
|
|
|
527 |
if term in excerpt:
|
528 |
score += 1
|
529 |
|
530 |
+
# Boost score for deals matching the top category
|
531 |
+
if top_category:
|
532 |
+
if top_category.lower() in title.lower():
|
533 |
+
score += 15
|
534 |
+
if top_category.lower() in content.lower():
|
535 |
+
score += 5
|
536 |
+
if top_category.lower() in excerpt.lower():
|
537 |
+
score += 5
|
538 |
+
|
539 |
# Add to scored deals if it has any relevance
|
540 |
if score > 0:
|
541 |
scored_deals.append((deal, score))
|