Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
import os | |
import pathlib | |
import tempfile | |
import gradio as gr | |
import torch | |
from huggingface_hub import snapshot_download | |
from modelscope.outputs import OutputKeys | |
from modelscope.pipelines import pipeline | |
DESCRIPTION = """# I2VGen-XL | |
I2VGen-XL can generate videos that are semantically similar to the input image and text. The generated videos are high-definition (1280 * 720), wide-screen (16:9), temporally coherent, and have good texture. | |
""" | |
if torch.cuda.is_available(): | |
model_cache_dir = os.getenv("MODEL_CACHE_DIR", "./models") | |
image2video_model_dir = pathlib.Path(model_cache_dir) / "MS-Image2Video" | |
snapshot_download(repo_id="damo-vilab/MS-Image2Video", repo_type="model", local_dir=image2video_model_dir) | |
image_to_video_pipe = pipeline( | |
task="image-to-video", model=image2video_model_dir.as_posix(), model_revision="v1.1.0", device="cuda:0" | |
) | |
video2video_model_dir = pathlib.Path(model_cache_dir) / "MS-Vid2Vid-XL" | |
snapshot_download(repo_id="damo-vilab/MS-Vid2Vid-XL", repo_type="model", local_dir=video2video_model_dir) | |
video_to_video_pipe = pipeline( | |
task="video-to-video", model=video2video_model_dir.as_posix(), model_revision="v1.1.0", device="cuda:0" | |
) | |
else: | |
image_to_video_pipe = None | |
video_to_video_pipe = None | |
def image_to_video(image_path: str) -> str: | |
output_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) | |
image_to_video_pipe(image_path, output_video=output_file.name)[OutputKeys.OUTPUT_VIDEO] | |
return output_file.name | |
def video_to_video(video_path: str, text: str) -> str: | |
p_input = {"video_path": video_path, "text": text} | |
output_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) | |
video_to_video_pipe(p_input, output_video=output_file.name)[OutputKeys.OUTPUT_VIDEO] | |
return output_file.name | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Box(): | |
gr.Markdown('Step 1: Upload an image and click the "Generate video" button.') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input image", type="filepath", height=300) | |
i2v_button = gr.Button("Generate video") | |
with gr.Column(): | |
output_video_1 = gr.Video(label="Output video 1", interactive=False, height=300) | |
with gr.Box(): | |
gr.Markdown( | |
'Step 2: Add an English text description of the video content and click the "Generate high-resolution video" button.' | |
) | |
with gr.Row(): | |
with gr.Column(): | |
text_description = gr.Textbox(label="Text description") | |
v2v_button = gr.Button("Generate high-resolution video") | |
with gr.Column(): | |
output_video_2 = gr.Video(label="Output video 2", height=300) | |
i2v_button.click( | |
fn=image_to_video, | |
inputs=input_image, | |
outputs=output_video_1, | |
api_name="image-to-video", | |
) | |
v2v_button.click( | |
fn=video_to_video, | |
inputs=[output_video_1, text_description], | |
outputs=output_video_2, | |
api_name="video-to-video", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=10, api_open=False).launch() | |