ainotes / app.py
seiching's picture
add tiktoken package及openai
b051926
raw
history blame
7.39 kB
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
MODEL_NAME = "seiching/whisper-small-seiching"
#MODEL_NAME = "openai/whisper-small"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
from openai import OpenAI
from concurrent.futures import ThreadPoolExecutor
import tiktoken
#from google.colab import userdata
# class OpenAIKeyClass:
# def __init__(self, api_key):
# self.api_key = api_key
# def get_key(self):
# return self.api_key
# def set_key(self, api_key):
# self.api_key = api_key
# # 建立一個 OpenAIKeyClass 物件
# openaikey=OpenAIKeyClass("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")
# # Add your own OpenAI API key
# client = OpenAI(
# # This is the default and can be omitted
# api_key=openaikey.get_key(),
# )
def call_openai_api(openaiobj,transcription):
response = openaiobj.chat.completions.create(
model="gpt-3.5-turbo",
temperature=0,
messages=[
{
"role": "system",
"content": "你是專業的會議紀錄製作員,請根據由語音辨識軟體將會議錄音所轉錄的逐字稿,也請注意逐字稿可能有錯,請以條列式,列出討論事項及結論,討論內容細節請略過,要用比較正式及容易閱讀的寫法,避免口語化"
},
{
"role": "user",
"content": transcription
}
]
)
return response.choices[0].message.content
def split_into_chunks(text, tokens=500):
encoding = tiktoken.encoding_for_model('gpt-3.5-turbo')
words = encoding.encode(text)
chunks = []
for i in range(0, len(words), tokens):
chunks.append(' '.join(encoding.decode(words[i:i + tokens])))
return chunks
def process_chunks(openaikeystr,inputtext):
openaiobj = OpenAI(
# This is the default and can be omitted
api_key=openaikeystr,
)
text = inputtext
#openaikey.set_key(openaikeystr)
#print('process_chunk',openaikey.get_key())
chunks = split_into_chunks(text)
response=''
for chunk in chunks:
response=response+call_openai_api(openaiobj,chunk)
return response
# # Processes chunks in parallel
# with ThreadPoolExecutor() as executor:
# responses = list(executor.map(call_openai_api, [openaiobj,chunks]))
# return responses
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
MODEL_NAME = "seiching/whisper-small-seiching"
BATCH_SIZE = 8
transcribe_text="this is a test"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
if seconds is not None:
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
else:
# we have a malformed timestamp so just return it as is
return seconds
def transcribe(file, task, return_timestamps):
outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task,"language": "chinese",}, return_timestamps=return_timestamps)
text = outputs["text"]
if return_timestamps:
timestamps = outputs["chunks"]
timestamps = [
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
for chunk in timestamps
]
text = "\n".join(str(feature) for feature in timestamps)
global transcribe_text
transcribe_text=text
# with open('asr_resul.txt', 'w') as f:
# f.write(text)
# ainotes=process_chunks(text)
# with open("ainotes_result.txt", "a") as f:
# f.write(ainotes)
return text
demo = gr.Blocks()
mic_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
gr.inputs.Checkbox(default=False, label="Return timestamps"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="會議紀錄小幫手AINotes",
description=(
"可由麥克風錄音或上傳語音檔"
f" 使用這個模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 先做語音辨識再做會議紀錄摘要"
" 長度沒有限制"
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
gr.inputs.Checkbox(default=False, label="Return timestamps"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="會議紀錄小幫手AINotes",
description=(
"可由麥克風錄音或上傳語音檔"
f" 使用這個模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 先做語音辨識再做會議紀錄摘要"
" 長度沒有限制"
),
# examples=[
# ["./example.flac", "transcribe", False],
# ["./example.flac", "transcribe", True],
# ],
cache_examples=True,
allow_flagging="never",
)
def writenotes(apikeystr):
#text=transcribe_text
#openaikey.set_key(inputkey)
#openaikey = OpenAIKeyClass(inputkey)
print('ok')
ainotestext=process_chunks(apikeystr,transcribe_text)
#ainotestext=""
# with open('asr_resul.txt', 'w') as f:
# #print(transcribe_text)
# # f.write(inputkey)
# f.write(transcribe_text)
# with open('ainotes.txt','w') as f:
# f.write(ainotestext)
return ainotestext
ainotes = gr.Interface(
fn=writenotes,
inputs=gr.Textbox(label="OPEN AI API KEY",placeholder="請輸入sk..."),
outputs="text",
layout="horizontal",
theme="huggingface",
title="會議紀錄小幫手AINotes",
description=(
"可由麥克風錄音或上傳語音檔"
f" 使用這個模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 先做語音辨識再做會議紀錄摘要"
" 長度沒有限制"
),
# examples=[
# ["./example.flac", "transcribe", False],
# ["./example.flac", "transcribe", True],
# ],
cache_examples=True,
allow_flagging="never",
)
with demo:
gr.TabbedInterface([file_transcribe,mic_transcribe,ainotes], ["語音檔辨識","麥克風語音檔辨識","產生會議紀錄" ])
demo.launch(enable_queue=True)