ainotes / app.py
seiching's picture
update gpt model
40ae977
raw
history blame
10.9 kB
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
import os
hugapikey=os.environ['openaikey']
genaikey=os.environ['genaikey']
MODEL_NAME = "seiching/whisper-small-seiching"
#MODEL_NAME = "openai/whisper-small"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
from openai import OpenAI
from concurrent.futures import ThreadPoolExecutor
import tiktoken
usemodelname='gpt-4-0125-preview'
def call_openai_api(openaiobj,transcription,usemodelname):
response = openaiobj.chat.completions.create(
#model="gpt-3.5-turbo",
model=usemodelname,
temperature=0,
messages=[
{
"role": "system",
"content": "你是專業的會議紀錄製作員,請根據由語音辨識軟體將會議錄音所轉錄的逐字稿,也請注意逐字稿可能有錯,討論內容細節請略過,請列出經主席確認的會議決議,並要用比較正式及容易閱讀的寫法,避免口語化"
},
{
"role": "user",
"content": transcription
}
]
)
return response.choices[0].message.content
def call_openai_summary(openaiobj,transcription):
response = openaiobj.chat.completions.create(
#model="gpt-3.5-turbo",
model=usemodelname,
temperature=0,
messages=[
{
"role": "system",
"content": "你是專業的會議紀錄製作員,請根據分段的會議決證,彙整成正式會議紀錄"
},
{
"role": "user",
"content": transcription
}
]
)
return response.choices[0].message.content
def call_openai_summaryall(openaiobj,transcription,usemodelname):
response = openaiobj.chat.completions.create(
#model="gpt-3.5-turbo",
model=usemodelname,
temperature=0,
messages=[
{
"role": "system",
"content": "你是專業的會議紀錄製作員,請根據分段的會議決證,彙整成正式會議紀錄"
},
{
"role": "user",
"content": transcription
}
]
)
return response.choices[0].message.content
def split_into_chunks(text, tokens=15900):
#encoding = tiktoken.encoding_for_model('gpt-3.5-turbo')
encoding = tiktoken.encoding_for_model(usemodelname)
words = encoding.encode(text)
chunks = []
for i in range(0, len(words), tokens):
chunks.append(' '.join(encoding.decode(words[i:i + tokens])))
return chunks
def process_chunks(openaikeystr,inputtext,LLMmodel):
# openaiobj = OpenAI(
# # This is the default and can be omitted
# api_key=openaikeystr,
# )
if hugapikey=='test':
realkey=openaikeystr
else:
realkey=hugapikey
#openaiojb =OpenAI(base_url="http://localhost:1234/v1", api_key="not-needed")
openaiobj =OpenAI( api_key=realkey)
text = inputtext
#openaikey.set_key(openaikeystr)
#print('process_chunk',openaikey.get_key())
chunks = split_into_chunks(text)
response='這是分段會議紀錄結果\n\n'
i=1
if len(chunks)>1:
for chunk in chunks:
response=response+'第' +str(i)+'段\n'+call_openai_api(openaiobj,chunk,LLMmodel)+'\n\n'
i=i+1
finalresponse=response+'\n\n 這是根據以上分段會議紀錄彙編如下 \n\n' +call_openai_api(openaiobj,response,LLMmodel)
# response=response+call_openai_summary(openaiobj,chunk)
else:
finalresponse=call_openai_api(openaiobj,chunk[0],LLMmodel)
return finalresponse
# # Processes chunks in parallel
# with ThreadPoolExecutor() as executor:
# responses = list(executor.map(call_openai_api, [openaiobj,chunks]))
# return responses
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
MODEL_NAME = "seiching/whisper-small-seiching"
BATCH_SIZE = 8
transcribe_text="this is a test"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
if seconds is not None:
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
else:
# we have a malformed timestamp so just return it as is
return seconds
def transcribe(file, task, return_timestamps):
outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task,"language": "chinese",}, return_timestamps=return_timestamps)
text = outputs["text"]
if return_timestamps:
timestamps = outputs["chunks"]
timestamps = [
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
for chunk in timestamps
]
text = "\n".join(str(feature) for feature in timestamps)
global transcribe_text
transcribe_text=text
# with open('asr_resul.txt', 'w') as f:
# f.write(text)
# ainotes=process_chunks(text)
# with open("ainotes_result.txt", "a") as f:
# f.write(ainotes)
return text
demo = gr.Blocks()
mic_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
gr.inputs.Checkbox(default=False, label="Return timestamps"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="會議紀錄小幫手AINotes",
description=(
"可由麥克風錄音或上傳語音檔"
f" 使用這個模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 先做語音辨識再做會議紀錄摘要"
" 長度沒有限制"
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
gr.inputs.Checkbox(default=False, label="Return timestamps"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="會議紀錄小幫手AINotes",
description=(
"可由麥克風錄音或上傳語音檔"
f" 使用這個模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 先做語音辨識再做會議紀錄摘要"
" 長度沒有限制"
),
# examples=[
# ["./example.flac", "transcribe", False],
# ["./example.flac", "transcribe", True],
# ],
cache_examples=True,
allow_flagging="never",
)
import google.generativeai as genai
def gpt4write(openaikeystr,transcribe_text,LLMmodel):
# openaiobj = OpenAI(
# # This is the default and can be omitted
# api_key=openaikeystr,
# )
if hugapikey=='test':
realkey=openaikeystr
else:
realkey=hugapikey
#openaiojb =OpenAI(base_url="http://localhost:1234/v1", api_key="not-needed")
openaiobj =OpenAI( api_key=realkey)
#text = inputtext
#openaikey.set_key(openaikeystr)
#print('process_chunk',openaikey.get_key())
#chunks = split_into_chunks(text)
#response='這是分段會議紀錄結果\n\n'
finalresponse=call_openai_api(openaiobj,transcribe_text,LLMmodel)
# response=response+call_openai_summary(openaiobj,chunk)
return finalresponse
return 'ok'
def gewritenote(inputscript):
api_key = genaikey
genai.configure(api_key = api_key)
model = genai.GenerativeModel('gemini-pro')
genprompt='你是專業的會議紀錄製作員,請根據由語音辨識軟體將會議錄音所轉錄的逐字稿,也請注意逐字稿可能有錯,討論內容細節請略過,請列出經主席確認的會議決議,並要用比較正式及容易閱讀的寫法,避免口語化'
genprompt=genprompt+'#'+inputscript+'#'
response = model.generate_content( genprompt)
return response.text
def writenotes( LLMmodel,apikeystr,inputscript):
#text=transcribe_text
#openaikey.set_key(inputkey)
#openaikey = OpenAIKeyClass(inputkey)
print('ok')
if len(inputscript)>10: #有資料表示不是來自語音辨識結果
transcribe_text=inputscript
if LLMmodel=="gpt-3.5-turbo":
ainotestext=process_chunks(apikeystr,transcribe_text,LLMmodel)
elif LLMmodel=="gpt-4-0125-preview":
ainotestext=gpt4write(apikeystr,transcribe_text,LLMmodel)
elif LLMmodel=='gemini':
ainotestext=gewritenote(inputscript)
# ainotestext=inputscript
#ainotestext=""
# with open('asr_resul.txt', 'w') as f:
# #print(transcribe_text)
# # f.write(inputkey)
# f.write(transcribe_text)
# with open('ainotes.txt','w') as f:
# f.write(ainotestext)
return ainotestext
ainotes = gr.Interface(
fn=writenotes,
inputs=[ gr.inputs.Radio(["gemini","gpt-3.5-turbo", "gpt-4-0125-preview"], label="LLMmodel", default="gemini"),gr.Textbox(label="使用GPT請輸入OPEN AI API KEY",placeholder="請輸入sk..."),gr.Textbox(label="逐字稿",placeholder="若沒有做語音辨識,請輸入逐字稿")],
outputs="text",
layout="horizontal",
theme="huggingface",
title="會議紀錄小幫手AINotes",
description=(
"可由麥克風錄音或上傳語音檔,並將本逐字稿欄位清空,若有逐字稿可以直接貼在逐字稿"
f" 使用這個模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 先做語音辨識再做會議紀錄摘要"
" 長度沒有限制"
),
# examples=[
# ["./example.flac", "transcribe", False],
# ["./example.flac", "transcribe", True],
# ],
cache_examples=True,
allow_flagging="never",
)
with demo:
gr.TabbedInterface([file_transcribe,mic_transcribe,ainotes], ["語音檔辨識","麥克風語音檔辨識","產生會議紀錄" ])
demo.launch(enable_queue=True)