Spaces:
Running
Running
import gradio as gr | |
import joblib | |
import numpy as np | |
# Load the trained model | |
model = joblib.load("decision_tree_regressor_model.pkl") | |
# Define the prediction function | |
def predict_rpm( | |
TM, U_percent, Thin, Thick, Neps, IPI, HI, ARKM, RKM_CV, MRKM, Elongation, Elon_CV | |
): | |
features = np.array([ | |
TM, U_percent, Thin, Thick, Neps, IPI, HI, ARKM, RKM_CV, MRKM, Elongation, Elon_CV | |
]).reshape(1, -1) | |
prediction = model.predict(features) | |
return round(prediction[0], 2) | |
# Define sliders for each feature | |
sliders = [ | |
gr.Slider(minimum=3.8, maximum=4.2, step=0.1, label="TM"), | |
gr.Slider(minimum=9.42, maximum=10.16, step=0.01, label="U_percent"), | |
gr.Slider(minimum=0.0, maximum=4, step=1, label="Thin"), | |
gr.Slider(minimum=18.0, maximum=40, step=1, label="Thick"), | |
gr.Slider(minimum=56, maximum=101.0, step=1, label="Neps"), | |
gr.Slider(minimum=89, maximum=122.0, step=1, label="IPI"), | |
gr.Slider(minimum=3.51, maximum=4.45, step=0.1, label="HI"), | |
gr.Slider(minimum=18.7, maximum=20.24, step=0.1, label="ARKM"), | |
gr.Slider(minimum=6.89, maximum=8.6, step=0.1, label="RKM_CV"), | |
gr.Slider(minimum=13.55, maximum=15.95, step=0.1, label="MRKM"), | |
gr.Slider(minimum=3.75, maximum=5.52, step=0.1, label="Elongation"), | |
gr.Slider(minimum=8.04, maximum=10.54, step=0.1, label="Elon_CV"), | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown("## Loom RPM Prediction App") | |
gr.Markdown("Adjust sliders for 12 features to predict Loom RPM using a Decision Tree Regressor.") | |
with gr.Row(): | |
sliders_row1 = sliders[0:4] | |
for slider in sliders_row1: | |
slider.render() | |
with gr.Row(): | |
sliders_row2 = sliders[4:8] | |
for slider in sliders_row2: | |
slider.render() | |
with gr.Row(): | |
sliders_row3 = sliders[8:12] | |
for slider in sliders_row3: | |
slider.render() | |
output = gr.Number(label="Predicted RPM") | |
predict_btn = gr.Button("Predict RPM") | |
predict_btn.click( | |
fn=predict_rpm, | |
inputs=sliders, | |
outputs=output | |
) | |
# Create the interface | |
# demo = gr.Interface( | |
# fn=predict_rpm, | |
# inputs=sliders, | |
# outputs=gr.Number(label="Predicted RPM"), | |
# title="RPM Prediction App", | |
# description="Adjust the sliders for each of the 12 features to predict the RPM." | |
# ) | |
if __name__ == "__main__": | |
demo.launch() | |