Spaces:
Running
Running
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
from paddle import ParamAttr | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout | |
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D | |
from paddleseg.cvlibs import manager | |
from paddleseg.utils import utils | |
class ConvBlock(nn.Layer): | |
def __init__(self, input_channels, output_channels, groups, name=None): | |
super(ConvBlock, self).__init__() | |
self.groups = groups | |
self._conv_1 = Conv2D( | |
in_channels=input_channels, | |
out_channels=output_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
weight_attr=ParamAttr(name=name + "1_weights"), | |
bias_attr=False) | |
if groups == 2 or groups == 3 or groups == 4: | |
self._conv_2 = Conv2D( | |
in_channels=output_channels, | |
out_channels=output_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
weight_attr=ParamAttr(name=name + "2_weights"), | |
bias_attr=False) | |
if groups == 3 or groups == 4: | |
self._conv_3 = Conv2D( | |
in_channels=output_channels, | |
out_channels=output_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
weight_attr=ParamAttr(name=name + "3_weights"), | |
bias_attr=False) | |
if groups == 4: | |
self._conv_4 = Conv2D( | |
in_channels=output_channels, | |
out_channels=output_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
weight_attr=ParamAttr(name=name + "4_weights"), | |
bias_attr=False) | |
self._pool = MaxPool2D( | |
kernel_size=2, stride=2, padding=0, return_mask=True) | |
def forward(self, inputs): | |
x = self._conv_1(inputs) | |
x = F.relu(x) | |
if self.groups == 2 or self.groups == 3 or self.groups == 4: | |
x = self._conv_2(x) | |
x = F.relu(x) | |
if self.groups == 3 or self.groups == 4: | |
x = self._conv_3(x) | |
x = F.relu(x) | |
if self.groups == 4: | |
x = self._conv_4(x) | |
x = F.relu(x) | |
skip = x | |
x, max_indices = self._pool(x) | |
return x, max_indices, skip | |
class VGGNet(nn.Layer): | |
def __init__(self, input_channels=3, layers=11, pretrained=None): | |
super(VGGNet, self).__init__() | |
self.pretrained = pretrained | |
self.layers = layers | |
self.vgg_configure = { | |
11: [1, 1, 2, 2, 2], | |
13: [2, 2, 2, 2, 2], | |
16: [2, 2, 3, 3, 3], | |
19: [2, 2, 4, 4, 4] | |
} | |
assert self.layers in self.vgg_configure.keys(), \ | |
"supported layers are {} but input layer is {}".format( | |
self.vgg_configure.keys(), layers) | |
self.groups = self.vgg_configure[self.layers] | |
# matting的第一层卷积输入为4通道,初始化是直接初始化为0 | |
self._conv_block_1 = ConvBlock( | |
input_channels, 64, self.groups[0], name="conv1_") | |
self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_") | |
self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_") | |
self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_") | |
self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_") | |
# 这一层的初始化需要利用vgg fc6的参数转换后进行初始化,可以暂时不考虑初始化 | |
self._conv_6 = Conv2D( | |
512, 512, kernel_size=3, padding=1, bias_attr=False) | |
self.init_weight() | |
def forward(self, inputs): | |
fea_list = [] | |
ids_list = [] | |
x, ids, skip = self._conv_block_1(inputs) | |
fea_list.append(skip) | |
ids_list.append(ids) | |
x, ids, skip = self._conv_block_2(x) | |
fea_list.append(skip) | |
ids_list.append(ids) | |
x, ids, skip = self._conv_block_3(x) | |
fea_list.append(skip) | |
ids_list.append(ids) | |
x, ids, skip = self._conv_block_4(x) | |
fea_list.append(skip) | |
ids_list.append(ids) | |
x, ids, skip = self._conv_block_5(x) | |
fea_list.append(skip) | |
ids_list.append(ids) | |
x = F.relu(self._conv_6(x)) | |
fea_list.append(x) | |
return fea_list | |
def init_weight(self): | |
if self.pretrained is not None: | |
utils.load_pretrained_model(self, self.pretrained) | |
def VGG11(**args): | |
model = VGGNet(layers=11, **args) | |
return model | |
def VGG13(**args): | |
model = VGGNet(layers=13, **args) | |
return model | |
def VGG16(**args): | |
model = VGGNet(layers=16, **args) | |
return model | |
def VGG19(**args): | |
model = VGGNet(layers=19, **args) | |
return model | |