Spaces:
Running
Running
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# The gca code was heavily based on https://github.com/Yaoyi-Li/GCA-Matting | |
# and https://github.com/open-mmlab/mmediting | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddleseg.models import layers | |
from paddleseg import utils | |
from paddleseg.cvlibs import manager, param_init | |
from ppmatting.models.layers import GuidedCxtAtten | |
class GCABaseline(nn.Layer): | |
def __init__(self, backbone, pretrained=None): | |
super().__init__() | |
self.encoder = backbone | |
self.decoder = ResShortCut_D_Dec([2, 3, 3, 2]) | |
def forward(self, inputs): | |
x = paddle.concat([inputs['img'], inputs['trimap'] / 255], axis=1) | |
embedding, mid_fea = self.encoder(x) | |
alpha_pred = self.decoder(embedding, mid_fea) | |
if self.training: | |
logit_dict = {'alpha_pred': alpha_pred, } | |
loss_dict = {} | |
alpha_gt = inputs['alpha'] | |
loss_dict["alpha"] = F.l1_loss(alpha_pred, alpha_gt) | |
loss_dict["all"] = loss_dict["alpha"] | |
return logit_dict, loss_dict | |
return alpha_pred | |
class GCA(GCABaseline): | |
def __init__(self, backbone, pretrained=None): | |
super().__init__(backbone, pretrained) | |
self.decoder = ResGuidedCxtAtten_Dec([2, 3, 3, 2]) | |
def conv5x5(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
"""5x5 convolution with padding""" | |
return nn.Conv2D( | |
in_planes, | |
out_planes, | |
kernel_size=5, | |
stride=stride, | |
padding=2, | |
groups=groups, | |
bias_attr=False, | |
dilation=dilation) | |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2D( | |
in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=dilation, | |
groups=groups, | |
bias_attr=False, | |
dilation=dilation) | |
def conv1x1(in_planes, out_planes, stride=1): | |
"""1x1 convolution""" | |
return nn.Conv2D( | |
in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False) | |
class BasicBlock(nn.Layer): | |
expansion = 1 | |
def __init__(self, | |
inplanes, | |
planes, | |
stride=1, | |
upsample=None, | |
norm_layer=None, | |
large_kernel=False): | |
super().__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm | |
self.stride = stride | |
conv = conv5x5 if large_kernel else conv3x3 | |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
if self.stride > 1: | |
self.conv1 = nn.utils.spectral_norm( | |
nn.Conv2DTranspose( | |
inplanes, | |
inplanes, | |
kernel_size=4, | |
stride=2, | |
padding=1, | |
bias_attr=False)) | |
else: | |
self.conv1 = nn.utils.spectral_norm(conv(inplanes, inplanes)) | |
self.bn1 = norm_layer(inplanes) | |
self.activation = nn.LeakyReLU(0.2) | |
self.conv2 = nn.utils.spectral_norm(conv(inplanes, planes)) | |
self.bn2 = norm_layer(planes) | |
self.upsample = upsample | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.activation(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.upsample is not None: | |
identity = self.upsample(x) | |
out += identity | |
out = self.activation(out) | |
return out | |
class ResNet_D_Dec(nn.Layer): | |
def __init__(self, | |
layers=[3, 4, 4, 2], | |
norm_layer=None, | |
large_kernel=False, | |
late_downsample=False): | |
super().__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm | |
self._norm_layer = norm_layer | |
self.large_kernel = large_kernel | |
self.kernel_size = 5 if self.large_kernel else 3 | |
self.inplanes = 512 if layers[0] > 0 else 256 | |
self.late_downsample = late_downsample | |
self.midplanes = 64 if late_downsample else 32 | |
self.conv1 = nn.utils.spectral_norm( | |
nn.Conv2DTranspose( | |
self.midplanes, | |
32, | |
kernel_size=4, | |
stride=2, | |
padding=1, | |
bias_attr=False)) | |
self.bn1 = norm_layer(32) | |
self.leaky_relu = nn.LeakyReLU(0.2) | |
self.conv2 = nn.Conv2D( | |
32, | |
1, | |
kernel_size=self.kernel_size, | |
stride=1, | |
padding=self.kernel_size // 2) | |
self.upsample = nn.UpsamplingNearest2D(scale_factor=2) | |
self.tanh = nn.Tanh() | |
self.layer1 = self._make_layer(BasicBlock, 256, layers[0], stride=2) | |
self.layer2 = self._make_layer(BasicBlock, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(BasicBlock, 64, layers[2], stride=2) | |
self.layer4 = self._make_layer( | |
BasicBlock, self.midplanes, layers[3], stride=2) | |
self.init_weight() | |
def _make_layer(self, block, planes, blocks, stride=1): | |
if blocks == 0: | |
return nn.Sequential(nn.Identity()) | |
norm_layer = self._norm_layer | |
upsample = None | |
if stride != 1: | |
upsample = nn.Sequential( | |
nn.UpsamplingNearest2D(scale_factor=2), | |
nn.utils.spectral_norm( | |
conv1x1(self.inplanes, planes * block.expansion)), | |
norm_layer(planes * block.expansion), ) | |
elif self.inplanes != planes * block.expansion: | |
upsample = nn.Sequential( | |
nn.utils.spectral_norm( | |
conv1x1(self.inplanes, planes * block.expansion)), | |
norm_layer(planes * block.expansion), ) | |
layers = [ | |
block(self.inplanes, planes, stride, upsample, norm_layer, | |
self.large_kernel) | |
] | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append( | |
block( | |
self.inplanes, | |
planes, | |
norm_layer=norm_layer, | |
large_kernel=self.large_kernel)) | |
return nn.Sequential(*layers) | |
def forward(self, x, mid_fea): | |
x = self.layer1(x) # N x 256 x 32 x 32 | |
print(x.shape) | |
x = self.layer2(x) # N x 128 x 64 x 64 | |
print(x.shape) | |
x = self.layer3(x) # N x 64 x 128 x 128 | |
print(x.shape) | |
x = self.layer4(x) # N x 32 x 256 x 256 | |
print(x.shape) | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.leaky_relu(x) | |
x = self.conv2(x) | |
alpha = (self.tanh(x) + 1.0) / 2.0 | |
return alpha | |
def init_weight(self): | |
for layer in self.sublayers(): | |
if isinstance(layer, nn.Conv2D): | |
if hasattr(layer, "weight_orig"): | |
param = layer.weight_orig | |
else: | |
param = layer.weight | |
param_init.xavier_uniform(param) | |
elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)): | |
param_init.constant_init(layer.weight, value=1.0) | |
param_init.constant_init(layer.bias, value=0.0) | |
elif isinstance(layer, BasicBlock): | |
param_init.constant_init(layer.bn2.weight, value=0.0) | |
class ResShortCut_D_Dec(ResNet_D_Dec): | |
def __init__(self, | |
layers, | |
norm_layer=None, | |
large_kernel=False, | |
late_downsample=False): | |
super().__init__( | |
layers, norm_layer, large_kernel, late_downsample=late_downsample) | |
def forward(self, x, mid_fea): | |
fea1, fea2, fea3, fea4, fea5 = mid_fea['shortcut'] | |
x = self.layer1(x) + fea5 | |
x = self.layer2(x) + fea4 | |
x = self.layer3(x) + fea3 | |
x = self.layer4(x) + fea2 | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.leaky_relu(x) + fea1 | |
x = self.conv2(x) | |
alpha = (self.tanh(x) + 1.0) / 2.0 | |
return alpha | |
class ResGuidedCxtAtten_Dec(ResNet_D_Dec): | |
def __init__(self, | |
layers, | |
norm_layer=None, | |
large_kernel=False, | |
late_downsample=False): | |
super().__init__( | |
layers, norm_layer, large_kernel, late_downsample=late_downsample) | |
self.gca = GuidedCxtAtten(128, 128) | |
def forward(self, x, mid_fea): | |
fea1, fea2, fea3, fea4, fea5 = mid_fea['shortcut'] | |
im = mid_fea['image_fea'] | |
x = self.layer1(x) + fea5 # N x 256 x 32 x 32 | |
x = self.layer2(x) + fea4 # N x 128 x 64 x 64 | |
x = self.gca(im, x, mid_fea['unknown']) # contextual attention | |
x = self.layer3(x) + fea3 # N x 64 x 128 x 128 | |
x = self.layer4(x) + fea2 # N x 32 x 256 x 256 | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.leaky_relu(x) + fea1 | |
x = self.conv2(x) | |
alpha = (self.tanh(x) + 1.0) / 2.0 | |
return alpha | |