text-summarizer / app.py
seemasaharann's picture
updated model and tokenizers to google-t5/t5-small
3142597 verified
raw
history blame contribute delete
779 Bytes
from transformers import pipeline
import gradio as gr
# Define the summarizer using the transformers pipeline
summarizer = pipeline("summarization", model="google-t5/t5-small", tokenizer="google-t5/t5-small", truncation=True, framework="tf")
# Define the function to process the text and return the summary
def translate(text):
text = text.replace('"', '"')
text = text.replace(''', "'")
text = text.replace('&', "&")
result = summarizer(text, min_length=180, truncation=True)
return result[0]['summary_text']
# Create the Gradio interface with updated syntax
iface = gr.Interface(
fn=translate,
inputs=gr.Textbox(lines=10, placeholder="Enter text to summarize..."),
outputs=gr.Textbox()
)
# Launch the Gradio app
iface.launch()