seedmanc's picture
Rename app.py to opp.py
8b75945
raw
history blame
4.38 kB
import os
import numpy as np
import torch
import pytorch_lightning as pl
import torch.nn as nn
import clip
from PIL import Image, ImageFile
import gradio as gr
# if you changed the MLP architecture during training, change it also here:
class MLP(pl.LightningModule):
def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
super().__init__()
self.input_size = input_size
self.xcol = xcol
self.ycol = ycol
self.layers = nn.Sequential(
nn.Linear(self.input_size, 1024),
#nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(1024, 128),
#nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, 64),
#nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 16),
#nn.ReLU(),
nn.Linear(16, 1)
)
def forward(self, x):
return self.layers(x)
def training_step(self, batch, batch_idx):
x = batch[self.xcol]
y = batch[self.ycol].reshape(-1, 1)
x_hat = self.layers(x)
loss = F.mse_loss(x_hat, y)
return loss
def validation_step(self, batch, batch_idx):
x = batch[self.xcol]
y = batch[self.ycol].reshape(-1, 1)
x_hat = self.layers(x)
loss = F.mse_loss(x_hat, y)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
def normalized(a, axis=-1, order=2):
import numpy as np # pylint: disable=import-outside-toplevel
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
l2[l2 == 0] = 1
return a / np.expand_dims(l2, axis)
def load_models():
model = MLP(768)
device = "cuda" if torch.cuda.is_available() else "cpu"
s = torch.load("sac+logos+ava1-l14-linearMSE.pth", map_location=device)
model.load_state_dict(s)
model.to(device)
model.eval()
model2, preprocess = clip.load("ViT-L/14", device=device)
model_dict = {}
model_dict['classifier'] = model
model_dict['clip_model'] = model2
model_dict['clip_preprocess'] = preprocess
model_dict['device'] = device
return model_dict
def predict(image):
image_input = model_dict['clip_preprocess'](image).unsqueeze(0).to(model_dict['device'])
with torch.no_grad():
image_features = model_dict['clip_model'].encode_image(image_input)
if model_dict['device'] == 'cuda':
im_emb_arr = normalized(image_features.detach().cpu().numpy())
im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.cuda.FloatTensor)
else:
im_emb_arr = normalized(image_features.detach().numpy())
im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.FloatTensor)
prediction = model_dict['classifier'](im_emb)
score = prediction.item()
return {'aesthetic score': score}
if __name__ == '__main__':
print('\tinit models')
global model_dict
model_dict = load_models()
inputs = [gr.inputs.Image(type='pil', label='Image')]
outputs = gr.outputs.JSON()
title = 'image aesthetic predictor'
examples = ['example1.jpg', 'example2.jpg', 'example3.jpg']
description = """
# Image Aesthetic Predictor Demo
This model (Image Aesthetic Predictor) is trained by LAION Team. See [https://github.com/christophschuhmann/improved-aesthetic-predictor](https://github.com/christophschuhmann/improved-aesthetic-predictor)
1. This model is desgined by adding five MLP layers on top of (frozen) CLIP ViT-L/14 and only the MLP layers are fine-tuned with a lot of images by a regression loss term such as MSE and MAE.
2. Output is bounded from 0 to 10. The higher the better.
"""
article = "<p style='text-align: center'><a href='https://laion.ai/blog/laion-aesthetics/'>LAION aesthetics blog post</a></p>"
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Row():
with gr.Column():
image_input = gr.Image(type='pil', label='Input image')
submit_button = gr.Button('Submit')
json_output = gr.JSON(label='Output')
submit_button.click(predict, inputs=image_input, outputs=json_output)
gr.Examples(examples=examples, inputs=image_input)
gr.HTML(article)
demo.launch()