singing_voice_conversion / utils /model_summary.py
RMSnow's picture
init and interface
df2accb
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import humanfriendly
import numpy as np
import torch
def get_human_readable_count(number: int) -> str:
"""Return human_readable_count
Originated from:
https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pytorch_lightning/core/memory.py
Abbreviates an integer number with K, M, B, T for thousands, millions,
billions and trillions, respectively.
Examples:
>>> get_human_readable_count(123)
'123 '
>>> get_human_readable_count(1234) # (one thousand)
'1 K'
>>> get_human_readable_count(2e6) # (two million)
'2 M'
>>> get_human_readable_count(3e9) # (three billion)
'3 B'
>>> get_human_readable_count(4e12) # (four trillion)
'4 T'
>>> get_human_readable_count(5e15) # (more than trillion)
'5,000 T'
Args:
number: a positive integer number
Return:
A string formatted according to the pattern described above.
"""
assert number >= 0
labels = [" ", "K", "M", "B", "T"]
num_digits = int(np.floor(np.log10(number)) + 1 if number > 0 else 1)
num_groups = int(np.ceil(num_digits / 3))
num_groups = min(num_groups, len(labels))
shift = -3 * (num_groups - 1)
number = number * (10**shift)
index = num_groups - 1
return f"{number:.2f} {labels[index]}"
def to_bytes(dtype) -> int:
return int(str(dtype)[-2:]) // 8
def model_summary(model: torch.nn.Module) -> str:
message = "Model structure:\n"
message += str(model)
tot_params = sum(p.numel() for p in model.parameters())
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
percent_trainable = "{:.1f}".format(num_params * 100.0 / tot_params)
tot_params = get_human_readable_count(tot_params)
num_params = get_human_readable_count(num_params)
message += "\n\nModel summary:\n"
message += f" Class Name: {model.__class__.__name__}\n"
message += f" Total Number of model parameters: {tot_params}\n"
message += (
f" Number of trainable parameters: {num_params} ({percent_trainable}%)\n"
)
num_bytes = humanfriendly.format_size(
sum(
p.numel() * to_bytes(p.dtype) for p in model.parameters() if p.requires_grad
)
)
message += f" Size: {num_bytes}\n"
dtype = next(iter(model.parameters())).dtype
message += f" Type: {dtype}"
return message