Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import yfinance as yf | |
yf.pdr_override() | |
from pandas_datareader import data as pdr | |
from sklearn.preprocessing import MinMaxScaler | |
from keras.models import load_model | |
start = '2005-01-01' | |
end = '2022-12-31' | |
st.title("Stock Market Trend Predictor") | |
user_input = st.text_input("Enter the stock ticker", "TATAPOWER.NS") | |
df = pdr.get_data_yahoo(user_input, start, end) | |
st.subheader("Data from year 2005 to 2022:") | |
st.write(df.describe()) | |
st.subheader("Closing Price VS Time Chart:") | |
fig = plt.figure(figsize=(12,6)) | |
plt.plot(df.Close, label="Closing Price") | |
plt.legend() | |
st.pyplot(fig) | |
moving_avg_100 = df.Close.rolling(100).mean() | |
st.subheader("Closing Price VS Time Chart With 100Moving Average:") | |
fig = plt.figure(figsize=(12,6)) | |
plt.plot(df.Close, label="Closing Price") | |
plt.plot(moving_avg_100,'red', label="100 Moving Average") | |
plt.legend() | |
st.pyplot(fig) | |
moving_avg_200 = df.Close.rolling(200).mean() | |
st.subheader("Closing Price VS Time Chart With 100Moving Average and 200Moving Average:") | |
fig = plt.figure(figsize=(12,6)) | |
plt.plot(df.Close, label="Closing Price") | |
plt.plot(moving_avg_100,'red', label="100 Moving Average") | |
plt.plot(moving_avg_200,'green', label="200 Moving Average") | |
plt.legend() | |
st.pyplot(fig) | |
#Spliting Data in Training and Testing Data | |
data_training = pd.DataFrame(df["Close"][0:int(len(df)*0.70)]) | |
data_testing = pd.DataFrame(df["Close"][int(len(df)*0.70):int(len(df))]) | |
#Scaling | |
scaler = MinMaxScaler(feature_range=(0,1)) | |
data_training_arr = scaler.fit_transform(data_training) | |
#Split data in x_train and y_train | |
x_train = [] | |
y_train = [] | |
for i in range(100, data_training_arr.shape[0]): | |
x_train.append(data_training_arr[i-100: i]) | |
y_train.append(data_training_arr[i, 0]) | |
x_train, y_train = np.array(x_train), np.array(y_train) | |
#Load the model | |
model = load_model("keras_model.h5") | |
past_100_days = data_training.tail(100) | |
final_test_df = past_100_days._append(data_testing, ignore_index=True) | |
print("Final_test_df") | |
print(final_test_df) | |
input_data = scaler.fit_transform(final_test_df) | |
print("input_data") | |
print(input_data.shape) | |
print(input_data) | |
#Split data in x_test and y_test | |
x_test = [] | |
y_test = [] | |
for i in range(100, input_data.shape[0]): | |
x_test.append(input_data[i-100: i]) | |
y_test.append(input_data[i, 0]) | |
x_test, y_test = np.array(x_test), np.array(y_test) | |
print(x_test.shape) | |
print(y_test.shape) | |
print("y_test") | |
print(y_test) | |
y_predicted = model.predict(x_test) | |
print("Predicted") | |
print(y_predicted) | |
sc = scaler.scale_ | |
print(sc) | |
scale_factor = 1/sc[0] | |
y_predicted = y_predicted * scale_factor | |
print(y_predicted) | |
y_test = y_test * scale_factor | |
print(y_test) | |
st.subheader("Original Stock Price Vs Predicted Stock Price:") | |
fig2 = plt.figure(figsize=(12,6)) | |
plt.plot(y_test, 'blue', label="Original Stock Price") | |
plt.plot(y_predicted, 'red', label="Predicted Stock Price") | |
plt.xlabel('Time') | |
plt.ylabel('Price') | |
plt.legend() | |
st.pyplot(fig2) | |