Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
#################### Norm2D for Discriminators #################### | |
import torch | |
import torch.nn as nn | |
import einops | |
from torch.nn.utils import spectral_norm, weight_norm | |
CONV_NORMALIZATIONS = frozenset( | |
[ | |
"none", | |
"weight_norm", | |
"spectral_norm", | |
"time_layer_norm", | |
"layer_norm", | |
"time_group_norm", | |
] | |
) | |
class ConvLayerNorm(nn.LayerNorm): | |
""" | |
Convolution-friendly LayerNorm that moves channels to last dimensions | |
before running the normalization and moves them back to original position right after. | |
""" | |
def __init__(self, normalized_shape, **kwargs): | |
super().__init__(normalized_shape, **kwargs) | |
def forward(self, x): | |
x = einops.rearrange(x, "b ... t -> b t ...") | |
x = super().forward(x) | |
x = einops.rearrange(x, "b t ... -> b ... t") | |
return | |
def apply_parametrization_norm(module: nn.Module, norm: str = "none") -> nn.Module: | |
assert norm in CONV_NORMALIZATIONS | |
if norm == "weight_norm": | |
return weight_norm(module) | |
elif norm == "spectral_norm": | |
return spectral_norm(module) | |
else: | |
# We already check was in CONV_NORMALIZATION, so any other choice | |
# doesn't need reparametrization. | |
return module | |
def get_norm_module( | |
module: nn.Module, causal: bool = False, norm: str = "none", **norm_kwargs | |
) -> nn.Module: | |
"""Return the proper normalization module. If causal is True, this will ensure the returned | |
module is causal, or return an error if the normalization doesn't support causal evaluation. | |
""" | |
assert norm in CONV_NORMALIZATIONS | |
if norm == "layer_norm": | |
assert isinstance(module, nn.modules.conv._ConvNd) | |
return ConvLayerNorm(module.out_channels, **norm_kwargs) | |
elif norm == "time_group_norm": | |
if causal: | |
raise ValueError("GroupNorm doesn't support causal evaluation.") | |
assert isinstance(module, nn.modules.conv._ConvNd) | |
return nn.GroupNorm(1, module.out_channels, **norm_kwargs) | |
else: | |
return nn.Identity() | |
class NormConv2d(nn.Module): | |
"""Wrapper around Conv2d and normalization applied to this conv | |
to provide a uniform interface across normalization approaches. | |
""" | |
def __init__( | |
self, | |
*args, | |
norm: str = "none", | |
norm_kwargs={}, | |
**kwargs, | |
): | |
super().__init__() | |
self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm) | |
self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs) | |
self.norm_type = norm | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.norm(x) | |
return x | |