Spaces:
Paused
Paused
| # This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
| # ## Citations | |
| # ```bibtex | |
| # @inproceedings{yao2021wenet, | |
| # title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
| # author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
| # booktitle={Proc. Interspeech}, | |
| # year={2021}, | |
| # address={Brno, Czech Republic }, | |
| # organization={IEEE} | |
| # } | |
| # @article{zhang2022wenet, | |
| # title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
| # author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
| # journal={arXiv preprint arXiv:2203.15455}, | |
| # year={2022} | |
| # } | |
| # | |
| from typing import Union | |
| import math | |
| import warnings | |
| import torch | |
| from torch.optim.lr_scheduler import _LRScheduler | |
| class WarmupLR(_LRScheduler): | |
| """The WarmupLR scheduler | |
| This scheduler is almost same as NoamLR Scheduler except for following | |
| difference: | |
| NoamLR: | |
| lr = optimizer.lr * model_size ** -0.5 | |
| * min(step ** -0.5, step * warmup_step ** -1.5) | |
| WarmupLR: | |
| lr = optimizer.lr * warmup_step ** 0.5 | |
| * min(step ** -0.5, step * warmup_step ** -1.5) | |
| Note that the maximum lr equals to optimizer.lr in this scheduler. | |
| """ | |
| def __init__( | |
| self, | |
| optimizer: torch.optim.Optimizer, | |
| warmup_steps: Union[int, float] = 25000, | |
| last_epoch: int = -1, | |
| ): | |
| self.warmup_steps = warmup_steps | |
| # __init__() must be invoked before setting field | |
| # because step() is also invoked in __init__() | |
| super().__init__(optimizer, last_epoch) | |
| def __repr__(self): | |
| return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})" | |
| def get_lr(self): | |
| step_num = self.last_epoch + 1 | |
| if self.warmup_steps == 0: | |
| return [lr * step_num**-0.5 for lr in self.base_lrs] | |
| else: | |
| return [ | |
| lr | |
| * self.warmup_steps**0.5 | |
| * min(step_num**-0.5, step_num * self.warmup_steps**-1.5) | |
| for lr in self.base_lrs | |
| ] | |
| def set_step(self, step: int): | |
| self.last_epoch = step | |
| class WarmupPolicy(_LRScheduler): | |
| """Adds warmup kwargs and warmup logic to lr policy. | |
| All arguments should be passed as kwargs for clarity, | |
| Args: | |
| warmup_steps: Number of training steps in warmup stage | |
| warmup_ratio: Ratio of warmup steps to total steps | |
| max_steps: Total number of steps while training or `None` for | |
| infinite training | |
| """ | |
| def __init__( | |
| self, | |
| optimizer, | |
| *, | |
| warmup_steps=None, | |
| warmup_ratio=None, | |
| max_steps=None, | |
| min_lr=0.0, | |
| last_epoch=-1, | |
| ): | |
| assert not ( | |
| warmup_steps is not None and warmup_ratio is not None | |
| ), "Either use particular number of step or ratio" | |
| assert ( | |
| warmup_ratio is None or max_steps is not None | |
| ), "If there is a ratio, there should be a total steps" | |
| # It is necessary to assign all attributes *before* __init__, | |
| # as class is wrapped by an inner class. | |
| self.max_steps = max_steps | |
| if warmup_steps is not None: | |
| self.warmup_steps = warmup_steps | |
| elif warmup_ratio is not None: | |
| self.warmup_steps = int(warmup_ratio * max_steps) | |
| else: | |
| self.warmup_steps = 0 | |
| self.min_lr = min_lr | |
| super().__init__(optimizer, last_epoch) | |
| def get_lr(self): | |
| if not self._get_lr_called_within_step: | |
| warnings.warn( | |
| "To get the last learning rate computed " | |
| "by the scheduler, please use `get_last_lr()`.", | |
| UserWarning, | |
| stacklevel=2, | |
| ) | |
| step = self.last_epoch | |
| if step <= self.warmup_steps and self.warmup_steps > 0: | |
| return self._get_warmup_lr(step) | |
| if step > self.max_steps: | |
| return [self.min_lr for _ in self.base_lrs] | |
| return self._get_lr(step) | |
| def _get_warmup_lr(self, step): | |
| lr_val = (step + 1) / (self.warmup_steps + 1) | |
| return [initial_lr * lr_val for initial_lr in self.base_lrs] | |
| def _get_lr(self, step): | |
| """Simple const lr policy""" | |
| return self.base_lrs | |
| class SquareRootConstantPolicy(_LRScheduler): | |
| """Adds warmup kwargs and warmup logic to lr policy. | |
| All arguments should be passed as kwargs for clarity, | |
| Args: | |
| warmup_steps: Number of training steps in warmup stage | |
| warmup_ratio: Ratio of warmup steps to total steps | |
| max_steps: Total number of steps while training or `None` for | |
| infinite training | |
| """ | |
| def __init__( | |
| self, | |
| optimizer, | |
| *, | |
| constant_steps=None, | |
| constant_ratio=None, | |
| max_steps=None, | |
| min_lr=0.0, | |
| last_epoch=-1, | |
| ): | |
| assert not ( | |
| constant_steps is not None and constant_ratio is not None | |
| ), "Either use particular number of step or ratio" | |
| assert ( | |
| constant_ratio is None or max_steps is not None | |
| ), "If there is a ratio, there should be a total steps" | |
| # It is necessary to assign all attributes *before* __init__, | |
| # as class is wrapped by an inner class. | |
| self.max_steps = max_steps | |
| if constant_steps is not None: | |
| self.constant_steps = constant_steps | |
| elif constant_ratio is not None: | |
| self.constant_steps = int(constant_ratio * max_steps) | |
| else: | |
| self.constant_steps = 0 | |
| self.constant_lr = 1 / (constant_steps**0.5) | |
| self.min_lr = min_lr | |
| super().__init__(optimizer, last_epoch) | |
| def get_lr(self): | |
| if not self._get_lr_called_within_step: | |
| warnings.warn( | |
| "To get the last learning rate computed " | |
| "by the scheduler, please use `get_last_lr()`.", | |
| UserWarning, | |
| stacklevel=2, | |
| ) | |
| step = self.last_epoch | |
| if step <= self.constant_steps: | |
| return [self.constant_lr for _ in self.base_lrs] | |
| if step > self.max_steps: | |
| return [self.min_lr for _ in self.base_lrs] | |
| return self._get_lr(step) | |
| def _get_lr(self, step): | |
| """Simple const lr policy""" | |
| return self.base_lrs | |
| class WarmupHoldPolicy(WarmupPolicy): | |
| """Variant of WarmupPolicy which maintains high | |
| learning rate for a defined number of steps. | |
| All arguments should be passed as kwargs for clarity, | |
| Args: | |
| warmup_steps: Number of training steps in warmup stage | |
| warmup_ratio: Ratio of warmup steps to total steps | |
| hold_steps: Number of training steps to | |
| hold the learning rate after warm up | |
| hold_ratio: Ratio of hold steps to total steps | |
| max_steps: Total number of steps while training or `None` for | |
| infinite training | |
| """ | |
| def __init__( | |
| self, | |
| optimizer, | |
| *, | |
| warmup_steps=None, | |
| warmup_ratio=None, | |
| hold_steps=None, | |
| hold_ratio=None, | |
| max_steps=None, | |
| min_lr=0.0, | |
| last_epoch=-1, | |
| ): | |
| assert not ( | |
| hold_steps is not None and hold_ratio is not None | |
| ), "Either use particular number of step or ratio" | |
| assert ( | |
| hold_ratio is None or max_steps is not None | |
| ), "If there is a ratio, there should be a total steps" | |
| self.min_lr = min_lr | |
| self._last_warmup_lr = 0.0 | |
| # Necessary to duplicate as class attributes are hidden in inner class | |
| self.max_steps = max_steps | |
| if warmup_steps is not None: | |
| self.warmup_steps = warmup_steps | |
| elif warmup_ratio is not None: | |
| self.warmup_steps = int(warmup_ratio * max_steps) | |
| else: | |
| self.warmup_steps = 0 | |
| if hold_steps is not None: | |
| self.hold_steps = hold_steps + self.warmup_steps | |
| elif hold_ratio is not None: | |
| self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps | |
| else: | |
| self.hold_steps = 0 | |
| super().__init__( | |
| optimizer, | |
| warmup_steps=warmup_steps, | |
| warmup_ratio=warmup_ratio, | |
| max_steps=max_steps, | |
| last_epoch=last_epoch, | |
| min_lr=min_lr, | |
| ) | |
| def get_lr(self): | |
| if not self._get_lr_called_within_step: | |
| warnings.warn( | |
| "To get the last learning rate computed by the scheduler," | |
| " " | |
| "please use `get_last_lr()`.", | |
| UserWarning, | |
| stacklevel=2, | |
| ) | |
| step = self.last_epoch | |
| # Warmup phase | |
| if step <= self.warmup_steps and self.warmup_steps > 0: | |
| return self._get_warmup_lr(step) | |
| # Hold phase | |
| if (step >= self.warmup_steps) and (step < self.hold_steps): | |
| return self.base_lrs | |
| if step > self.max_steps: | |
| return [self.min_lr for _ in self.base_lrs] | |
| return self._get_lr(step) | |
| class WarmupAnnealHoldPolicy(_LRScheduler): | |
| """Adds warmup kwargs and warmup logic to lr policy. | |
| All arguments should be passed as kwargs for clarity, | |
| Args: | |
| warmup_steps: Number of training steps in warmup stage | |
| warmup_ratio: Ratio of warmup steps to total steps | |
| max_steps: Total number of steps while training or `None` for | |
| infinite training | |
| min_lr: Minimum lr to hold the learning rate after decay at. | |
| constant_steps: Number of steps to keep lr constant at. | |
| constant_ratio: Ratio of steps to keep lr constant. | |
| """ | |
| def __init__( | |
| self, | |
| optimizer, | |
| *, | |
| warmup_steps=None, | |
| warmup_ratio=None, | |
| constant_steps=None, | |
| constant_ratio=None, | |
| max_steps=None, | |
| min_lr=0.0, | |
| last_epoch=-1, | |
| ): | |
| assert not ( | |
| warmup_steps is not None and warmup_ratio is not None | |
| ), "Either use particular number of step or ratio" | |
| assert not ( | |
| constant_steps is not None and constant_ratio is not None | |
| ), "Either use constant_steps or constant_ratio" | |
| assert ( | |
| warmup_ratio is None or max_steps is not None | |
| ), "If there is a ratio, there should be a total steps" | |
| # It is necessary to assign all attributes *before* __init__, | |
| # as class is wrapped by an inner class. | |
| self.max_steps = max_steps | |
| if warmup_steps is not None: | |
| self.warmup_steps = warmup_steps | |
| elif warmup_ratio is not None: | |
| self.warmup_steps = int(warmup_ratio * max_steps) | |
| else: | |
| self.warmup_steps = 0 | |
| if constant_steps is not None: | |
| self.constant_steps = constant_steps | |
| elif constant_ratio is not None: | |
| self.constant_steps = int(constant_ratio * max_steps) | |
| else: | |
| self.constant_steps = 0 | |
| self.decay_steps = max_steps - (self.constant_steps + self.warmup_steps) | |
| self.min_lr = min_lr | |
| super().__init__(optimizer, last_epoch) | |
| def get_lr(self): | |
| if not self._get_lr_called_within_step: | |
| warnings.warn( | |
| "To get the last learning rate computed " | |
| "by the scheduler, please use `get_last_lr()`.", | |
| UserWarning, | |
| stacklevel=2, | |
| ) | |
| step = self.last_epoch | |
| # Warmup steps | |
| if self.warmup_steps > 0 and step <= self.warmup_steps: | |
| return self._get_warmup_lr(step) | |
| # Constant steps after warmup and decay | |
| if ( | |
| self.constant_steps > 0 | |
| and (self.warmup_steps + self.decay_steps) < step <= self.max_steps | |
| ): | |
| return self._get_constant_lr(step) | |
| # Min lr after max steps of updates | |
| if step > self.max_steps: | |
| return [self.min_lr for _ in self.base_lrs] | |
| return self._get_lr(step) | |
| def _get_warmup_lr(self, step): | |
| lr_val = (step + 1) / (self.warmup_steps + 1) | |
| return [initial_lr * lr_val for initial_lr in self.base_lrs] | |
| def _get_constant_lr(self, step): | |
| return [self.min_lr for _ in self.base_lrs] | |
| def _get_lr(self, step): | |
| """Simple const lr policy""" | |
| return self.base_lrs | |
| def _squareroot_annealing(initial_lr, step, max_steps, min_lr): | |
| mult = ((max_steps - step) / max_steps) ** 0.5 | |
| out_lr = initial_lr * mult | |
| out_lr = max(out_lr, min_lr) | |
| return out_lr | |
| def _square_annealing(initial_lr, step, max_steps, min_lr): | |
| mult = ((max_steps - step) / max_steps) ** 2 | |
| out_lr = initial_lr * mult | |
| out_lr = max(out_lr, min_lr) | |
| return out_lr | |
| def _cosine_annealing(initial_lr, step, max_steps, min_lr): | |
| mult = 0.5 * (1 + math.cos(math.pi * step / max_steps)) | |
| out_lr = (initial_lr - min_lr) * mult + min_lr | |
| return out_lr | |
| def _linear_warmup_with_cosine_annealing( | |
| max_lr, warmup_steps, step, decay_steps, min_lr | |
| ): | |
| assert max_lr > min_lr | |
| # Use linear warmup for the initial part. | |
| if warmup_steps > 0 and step <= warmup_steps: | |
| return max_lr * float(step) / float(warmup_steps) | |
| # For any steps larger than `decay_steps`, use `min_lr`. | |
| if step > warmup_steps + decay_steps: | |
| return min_lr | |
| # If we are done with the warmup period, use the decay style. | |
| num_steps_ = step - warmup_steps | |
| decay_steps_ = decay_steps | |
| decay_ratio = float(num_steps_) / float(decay_steps_) | |
| assert decay_ratio >= 0.0 | |
| assert decay_ratio <= 1.0 | |
| delta_lr = max_lr - min_lr | |
| coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0) | |
| return min_lr + coeff * delta_lr | |
| def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle): | |
| if cycle: | |
| multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps) | |
| decay_steps *= multiplier | |
| else: | |
| step = min(step, decay_steps) | |
| p = step / decay_steps | |
| lr = (initial_lr - min_lr) * math.pow(1.0 - p, power) | |
| lr += min_lr | |
| return lr | |
| def _noam_hold_annealing( | |
| initial_lr, step, warmup_steps, hold_steps, decay_rate, min_lr | |
| ): | |
| # hold_steps = total number of steps | |
| # to hold the LR, not the warmup + hold steps. | |
| T_warmup_decay = max(1, warmup_steps**decay_rate) | |
| T_hold_decay = max(1, (step - hold_steps) ** decay_rate) | |
| lr = (initial_lr * T_warmup_decay) / T_hold_decay | |
| lr = max(lr, min_lr) | |
| return lr | |
| class SquareAnnealing(WarmupPolicy): | |
| def __init__(self, optimizer, *, max_steps, min_lr=1e-5, last_epoch=-1, **kwargs): | |
| super().__init__( | |
| optimizer=optimizer, | |
| max_steps=max_steps, | |
| last_epoch=last_epoch, | |
| min_lr=min_lr, | |
| **kwargs, | |
| ) | |
| def _get_lr(self, step): | |
| new_lrs = [ | |
| _square_annealing( | |
| initial_lr=initial_lr, | |
| step=step - self.warmup_steps, | |
| max_steps=self.max_steps - self.warmup_steps, | |
| min_lr=self.min_lr, | |
| ) | |
| for initial_lr in self.base_lrs | |
| ] | |
| return new_lrs | |
| class SquareRootAnnealing(WarmupPolicy): | |
| def __init__(self, optimizer, *, max_steps, min_lr=0, last_epoch=-1, **kwargs): | |
| super().__init__( | |
| optimizer=optimizer, | |
| max_steps=max_steps, | |
| last_epoch=last_epoch, | |
| min_lr=min_lr, | |
| **kwargs, | |
| ) | |
| def _get_lr(self, step): | |
| new_lrs = [ | |
| _squareroot_annealing( | |
| initial_lr=initial_lr, | |
| step=step, | |
| max_steps=self.max_steps, | |
| min_lr=self.min_lr, | |
| ) | |
| for initial_lr in self.base_lrs | |
| ] | |
| return new_lrs | |
| class CosineAnnealing(WarmupAnnealHoldPolicy): | |
| def __init__(self, optimizer, *, max_steps, min_lr=0, last_epoch=-1, **kwargs): | |
| super().__init__( | |
| optimizer=optimizer, | |
| max_steps=max_steps, | |
| last_epoch=last_epoch, | |
| min_lr=min_lr, | |
| **kwargs, | |
| ) | |
| def _get_lr(self, step): | |
| for initial_lr in self.base_lrs: | |
| if initial_lr < self.min_lr: | |
| raise ValueError( | |
| f"{self} received an initial learning rate " | |
| f"that was lower than the minimum learning rate." | |
| ) | |
| if self.constant_steps is None or self.constant_steps == 0: | |
| new_lrs = [ | |
| _cosine_annealing( | |
| initial_lr=initial_lr, | |
| step=step - self.warmup_steps, | |
| max_steps=self.max_steps - self.warmup_steps, | |
| min_lr=self.min_lr, | |
| ) | |
| for initial_lr in self.base_lrs | |
| ] | |
| else: | |
| new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step) | |
| return new_lrs | |
| def _get_warmup_lr(self, step): | |
| if self.constant_steps is None or self.constant_steps == 0: | |
| return super()._get_warmup_lr(step) | |
| else: | |
| # Use linear warmup for the initial part. | |
| return self._get_linear_warmup_with_cosine_annealing_lr(step) | |
| def _get_constant_lr(self, step): | |
| # Only called when `constant_steps` > 0. | |
| return self._get_linear_warmup_with_cosine_annealing_lr(step) | |
| def _get_linear_warmup_with_cosine_annealing_lr(self, step): | |
| # Cosine Schedule for Megatron LM, | |
| # slightly different warmup schedule + constant LR at the end. | |
| new_lrs = [ | |
| _linear_warmup_with_cosine_annealing( | |
| max_lr=self.base_lrs[0], | |
| warmup_steps=self.warmup_steps, | |
| step=step, | |
| decay_steps=self.decay_steps, | |
| min_lr=self.min_lr, | |
| ) | |
| for _ in self.base_lrs | |
| ] | |
| return new_lrs | |
| class NoamAnnealing(_LRScheduler): | |
| def __init__( | |
| self, | |
| optimizer, | |
| *, | |
| d_model, | |
| warmup_steps=None, | |
| warmup_ratio=None, | |
| max_steps=None, | |
| min_lr=0.0, | |
| last_epoch=-1, | |
| ): | |
| self._normalize = d_model ** (-0.5) | |
| assert not ( | |
| warmup_steps is not None and warmup_ratio is not None | |
| ), "Either use particular number of step or ratio" | |
| assert ( | |
| warmup_ratio is None or max_steps is not None | |
| ), "If there is a ratio, there should be a total steps" | |
| # It is necessary to assign all attributes *before* __init__, | |
| # as class is wrapped by an inner class. | |
| self.max_steps = max_steps | |
| if warmup_steps is not None: | |
| self.warmup_steps = warmup_steps | |
| elif warmup_ratio is not None: | |
| self.warmup_steps = int(warmup_ratio * max_steps) | |
| else: | |
| self.warmup_steps = 0 | |
| self.min_lr = min_lr | |
| super().__init__(optimizer, last_epoch) | |
| def get_lr(self): | |
| if not self._get_lr_called_within_step: | |
| warnings.warn( | |
| "To get the last learning rate computed " | |
| "by the scheduler, please use `get_last_lr()`.", | |
| UserWarning, | |
| stacklevel=2, | |
| ) | |
| step = max(1, self.last_epoch) | |
| for initial_lr in self.base_lrs: | |
| if initial_lr < self.min_lr: | |
| raise ValueError( | |
| f"{self} received an initial learning rate " | |
| f"that was lower than the minimum learning rate." | |
| ) | |
| new_lrs = [ | |
| self._noam_annealing(initial_lr=initial_lr, step=step) | |
| for initial_lr in self.base_lrs | |
| ] | |
| return new_lrs | |
| def _noam_annealing(self, initial_lr, step): | |
| if self.warmup_steps > 0: | |
| mult = self._normalize * min( | |
| step ** (-0.5), step * (self.warmup_steps ** (-1.5)) | |
| ) | |
| else: | |
| mult = self._normalize * step ** (-0.5) | |
| out_lr = initial_lr * mult | |
| if step > self.warmup_steps: | |
| out_lr = max(out_lr, self.min_lr) | |
| return out_lr | |
| class NoamHoldAnnealing(WarmupHoldPolicy): | |
| def __init__( | |
| self, | |
| optimizer, | |
| *, | |
| max_steps, | |
| decay_rate=0.5, | |
| min_lr=0.0, | |
| last_epoch=-1, | |
| **kwargs, | |
| ): | |
| """ | |
| From Nemo: | |
| Implementation of the Noam Hold Annealing policy | |
| from the SqueezeFormer paper. | |
| Unlike NoamAnnealing, the peak learning rate | |
| can be explicitly set for this scheduler. | |
| The schedule first performs linear warmup, | |
| then holds the peak LR, then decays with some schedule for | |
| the remainder of the steps. | |
| Therefore the min-lr is still dependent | |
| on the hyper parameters selected. | |
| It's schedule is determined by three factors- | |
| Warmup Steps: Initial stage, where linear warmup | |
| occurs uptil the peak LR is reached. Unlike NoamAnnealing, | |
| the peak LR is explicitly stated here instead of a scaling factor. | |
| Hold Steps: Intermediate stage, where the peak LR | |
| is maintained for some number of steps. In this region, | |
| the high peak LR allows the model to converge faster | |
| if training is stable. However the high LR | |
| may also cause instability during training. | |
| Should usually be a significant fraction of training | |
| steps (around 30-40% of the entire training steps). | |
| Decay Steps: Final stage, where the LR rapidly decays | |
| with some scaling rate (set by decay rate). | |
| To attain Noam decay, use 0.5, | |
| for Squeezeformer recommended decay, use 1.0. | |
| The fast decay after prolonged high LR during | |
| hold phase allows for rapid convergence. | |
| References: | |
| - [Squeezeformer: | |
| An Efficient Transformer for Automatic Speech Recognition] | |
| (https://arxiv.org/abs/2206.00888) | |
| Args: | |
| optimizer: Pytorch compatible Optimizer object. | |
| warmup_steps: Number of training steps in warmup stage | |
| warmup_ratio: Ratio of warmup steps to total steps | |
| hold_steps: Number of training steps to | |
| hold the learning rate after warm up | |
| hold_ratio: Ratio of hold steps to total steps | |
| max_steps: Total number of steps while training or `None` for | |
| infinite training | |
| decay_rate: Float value describing the polynomial decay | |
| after the hold period. Default value | |
| of 0.5 corresponds to Noam decay. | |
| min_lr: Minimum learning rate. | |
| """ | |
| self.decay_rate = decay_rate | |
| super().__init__( | |
| optimizer=optimizer, | |
| max_steps=max_steps, | |
| last_epoch=last_epoch, | |
| min_lr=min_lr, | |
| **kwargs, | |
| ) | |
| def _get_lr(self, step): | |
| if self.warmup_steps is None or self.warmup_steps == 0: | |
| raise ValueError("Noam scheduler cannot be used without warmup steps") | |
| if self.hold_steps > 0: | |
| hold_steps = self.hold_steps - self.warmup_steps | |
| else: | |
| hold_steps = 0 | |
| new_lrs = [ | |
| _noam_hold_annealing( | |
| initial_lr, | |
| step=step, | |
| warmup_steps=self.warmup_steps, | |
| hold_steps=hold_steps, | |
| decay_rate=self.decay_rate, | |
| min_lr=self.min_lr, | |
| ) | |
| for initial_lr in self.base_lrs | |
| ] | |
| return new_lrs | |
| def set_step(self, step: int): | |
| self.last_epoch = step | |