Spaces:
Sleeping
Sleeping
import discord | |
import logging | |
import os | |
from huggingface_hub import InferenceClient | |
import asyncio | |
import subprocess | |
from datasets import load_dataset | |
# ๋ก๊น ์ค์ | |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s:%(levelname)s:%(name)s: %(message)s', handlers=[logging.StreamHandler()]) | |
# ์ธํ ํธ ์ค์ | |
intents = discord.Intents.default() | |
intents.message_content = True | |
intents.messages = True | |
intents.guilds = True | |
intents.guild_messages = True | |
# ๋ฐ์ดํฐ์ ๋ก๋ | |
data_files = ['train_0.csv', 'train_1.csv', 'train_2.csv', 'train_3.csv', 'train_4.csv', 'train_5.csv'] | |
law_dataset = load_dataset('csv', data_files=data_files) | |
# ์ถ๋ก API ํด๋ผ์ด์ธํธ ์ค์ | |
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus", token=os.getenv("HF_TOKEN")) | |
# ํน์ ์ฑ๋ ID | |
SPECIFIC_CHANNEL_ID = int(os.getenv("DISCORD_CHANNEL_ID")) | |
# ๋ํ ํ์คํ ๋ฆฌ๋ฅผ ์ ์ฅํ ์ ์ญ ๋ณ์ | |
conversation_history = [] | |
class MyClient(discord.Client): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.is_processing = False | |
async def on_ready(self): | |
logging.info(f'{self.user}๋ก ๋ก๊ทธ์ธ๋์์ต๋๋ค!') | |
subprocess.Popen(["python", "web.py"]) | |
logging.info("Web.py server has been started.") | |
async def on_message(self, message): | |
if message.author == self.user: | |
return | |
if not self.is_message_in_specific_channel(message): | |
return | |
if self.is_processing: | |
return | |
self.is_processing = True | |
try: | |
response = await self.generate_response(message) | |
await message.channel.send(response) | |
finally: | |
self.is_processing = False | |
def is_message_in_specific_channel(self, message): | |
return message.channel.id == SPECIFIC_CHANNEL_ID or ( | |
isinstance(message.channel, discord.Thread) and message.channel.parent_id == SPECIFIC_CHANNEL_ID | |
) | |
async def generate_response(self, message): | |
global conversation_history | |
user_input = message.content | |
user_mention = message.author.mention | |
system_message = f"{user_mention}, DISCORD์์ ์ฌ์ฉ์๋ค์ ์ง๋ฌธ์ ๋ตํ๋ ์ด์์คํดํธ์ ๋๋ค." | |
answer = self.search_in_dataset(user_input, law_dataset) | |
full_response_text = system_message + "\n\n" + answer | |
if not full_response_text.strip(): | |
full_response_text = "์ฃ์กํฉ๋๋ค, ์ ๋ณด๋ฅผ ์ ๊ณตํ ์ ์์ต๋๋ค." | |
max_length = 2000 | |
if len(full_response_text) > max_length: | |
for i in range(0, len(full_response_text), max_length): | |
part_response = full_response_text[i:i+max_length] | |
await message.channel.send(part_response) | |
else: | |
await message.channel.send(full_response_text) | |
logging.debug(f'Full model response sent: {full_response_text}') | |
conversation_history.append({"role": "assistant", "content": full_response_text}) | |
def search_in_dataset(self, query, dataset): | |
# ์ฌ์ฉ์์ ์ฟผ๋ฆฌ์ ๊ด๋ จ๋ ์ฌ๊ฑด๋ช ์ ์ฐพ์ ์ฌ๊ฑด๋ฒํธ๋ฅผ ๋ฐํํฉ๋๋ค. | |
response = [] | |
for record in dataset['train']: | |
if query in record['์ฌ๊ฑด๋ช ']: | |
detail = f"์ฌ๊ฑด๋ฒํธ: {record['์ฌ๊ฑด๋ฒํธ']}" | |
response.append(detail) | |
return "\n".join(response) if response else "๊ด๋ จ ๋ฒ๋ฅ ์ ๋ณด๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค." | |
if __name__ == "__main__": | |
discord_client = MyClient(intents=intents) | |
discord_client.run(os.getenv('DISCORD_TOKEN')) | |