Spaces:
Running
on
Zero
Running
on
Zero
seawolf2357
commited on
Commit
•
7ed38a8
1
Parent(s):
7b436d6
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import torch
|
|
6 |
import time
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
from custom_pipeline import FluxWithCFGPipeline
|
|
|
9 |
|
10 |
# Constants
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -14,6 +15,9 @@ DEFAULT_WIDTH = 1024
|
|
14 |
DEFAULT_HEIGHT = 768
|
15 |
DEFAULT_INFERENCE_STEPS = 4
|
16 |
|
|
|
|
|
|
|
17 |
# Device and model setup
|
18 |
dtype = torch.float16
|
19 |
pipe = FluxWithCFGPipeline.from_pretrained(
|
@@ -23,15 +27,25 @@ pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtyp
|
|
23 |
pipe.to("cuda")
|
24 |
torch.cuda.empty_cache()
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Inference function
|
27 |
@spaces.GPU(duration=25)
|
28 |
def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
29 |
if randomize_seed:
|
30 |
seed = random.randint(0, MAX_SEED)
|
31 |
generator = torch.Generator().manual_seed(int(float(seed)))
|
32 |
|
33 |
img = pipe.generate_images(
|
34 |
-
prompt=
|
35 |
width=width,
|
36 |
height=height,
|
37 |
num_inference_steps=DEFAULT_INFERENCE_STEPS,
|
@@ -70,53 +84,4 @@ footer {visibility: hidden;}
|
|
70 |
.generate-box .row {display: flex; align-items: center; margin-bottom: 10px;}
|
71 |
.generate-box .row > * {margin-right: 10px;}
|
72 |
.generate-box .row > *:last-child {margin-right: 0;}
|
73 |
-
.advanced-options {background-color: #e0e0e0; border-radius
|
74 |
-
.examples-gallery {margin-top: 30px;}
|
75 |
-
"""
|
76 |
-
|
77 |
-
# --- Gradio UI ---
|
78 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
|
79 |
-
with gr.Column(elem_id="container"):
|
80 |
-
gr.Markdown("# Open FLUX 1.1 Pro")
|
81 |
-
gr.Markdown("Flux Schnell-based with no commercial restrictions, 4-step fast image generation with quality enhancement, and improved memory efficiency (VAE).")
|
82 |
-
|
83 |
-
with gr.Row():
|
84 |
-
with gr.Column(scale=2):
|
85 |
-
result = gr.Image(label="Generated Image", show_label=False, interactive=False, elem_classes="image-box")
|
86 |
-
with gr.Column(scale=1):
|
87 |
-
with gr.Column(elem_classes="generate-box"):
|
88 |
-
prompt = gr.Text(
|
89 |
-
label="Prompt",
|
90 |
-
placeholder="sexy woman & man , under wear, full body, sunday",
|
91 |
-
lines=3,
|
92 |
-
)
|
93 |
-
generateBtn = gr.Button("Generate Image", variant="primary")
|
94 |
-
|
95 |
-
with gr.Column(elem_classes="advanced-options"):
|
96 |
-
with gr.Row():
|
97 |
-
seed = gr.Number(label="Seed", value=42)
|
98 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
99 |
-
with gr.Row():
|
100 |
-
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
|
101 |
-
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
|
102 |
-
|
103 |
-
with gr.Column(elem_classes="examples-gallery"):
|
104 |
-
gr.Markdown("### Gallery")
|
105 |
-
gr.Examples(
|
106 |
-
examples=examples,
|
107 |
-
fn=generate_image,
|
108 |
-
inputs=[prompt],
|
109 |
-
outputs=[result, seed],
|
110 |
-
cache_examples="lazy"
|
111 |
-
)
|
112 |
-
|
113 |
-
generateBtn.click(
|
114 |
-
fn=generate_image,
|
115 |
-
inputs=[prompt, seed, width, height, randomize_seed],
|
116 |
-
outputs=[result, seed],
|
117 |
-
show_progress="full",
|
118 |
-
api_name="GenerateImage",
|
119 |
-
)
|
120 |
-
|
121 |
-
# Launch the app
|
122 |
-
demo.launch()
|
|
|
6 |
import time
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
from custom_pipeline import FluxWithCFGPipeline
|
9 |
+
from transformers import pipeline
|
10 |
|
11 |
# Constants
|
12 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
15 |
DEFAULT_HEIGHT = 768
|
16 |
DEFAULT_INFERENCE_STEPS = 4
|
17 |
|
18 |
+
# Initialize translator
|
19 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
20 |
+
|
21 |
# Device and model setup
|
22 |
dtype = torch.float16
|
23 |
pipe = FluxWithCFGPipeline.from_pretrained(
|
|
|
27 |
pipe.to("cuda")
|
28 |
torch.cuda.empty_cache()
|
29 |
|
30 |
+
# Translation function
|
31 |
+
def translate_to_english(text):
|
32 |
+
if any(ord('가') <= ord(char) <= ord('힣') for char in text):
|
33 |
+
translated = translator(text)[0]['translation_text']
|
34 |
+
return translated
|
35 |
+
return text
|
36 |
+
|
37 |
# Inference function
|
38 |
@spaces.GPU(duration=25)
|
39 |
def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
|
40 |
+
# Translate prompt if Korean
|
41 |
+
english_prompt = translate_to_english(prompt)
|
42 |
+
|
43 |
if randomize_seed:
|
44 |
seed = random.randint(0, MAX_SEED)
|
45 |
generator = torch.Generator().manual_seed(int(float(seed)))
|
46 |
|
47 |
img = pipe.generate_images(
|
48 |
+
prompt=english_prompt,
|
49 |
width=width,
|
50 |
height=height,
|
51 |
num_inference_steps=DEFAULT_INFERENCE_STEPS,
|
|
|
84 |
.generate-box .row {display: flex; align-items: center; margin-bottom: 10px;}
|
85 |
.generate-box .row > * {margin-right: 10px;}
|
86 |
.generate-box .row > *:last-child {margin-right: 0;}
|
87 |
+
.advanced-options {background-color: #e0e0e0; border-radius
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|