LangScene-X / vggt /heads /track_modules /base_track_predictor.py
seawolf2357's picture
Upload folder using huggingface_hub
684943d verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from einops import rearrange, repeat
from .blocks import EfficientUpdateFormer, CorrBlock
from .utils import sample_features4d, get_2d_embedding, get_2d_sincos_pos_embed
from .modules import Mlp
class BaseTrackerPredictor(nn.Module):
def __init__(
self,
stride=1,
corr_levels=5,
corr_radius=4,
latent_dim=128,
hidden_size=384,
use_spaceatt=True,
depth=6,
max_scale=518,
predict_conf=True,
):
super(BaseTrackerPredictor, self).__init__()
"""
The base template to create a track predictor
Modified from https://github.com/facebookresearch/co-tracker/
and https://github.com/facebookresearch/vggsfm
"""
self.stride = stride
self.latent_dim = latent_dim
self.corr_levels = corr_levels
self.corr_radius = corr_radius
self.hidden_size = hidden_size
self.max_scale = max_scale
self.predict_conf = predict_conf
self.flows_emb_dim = latent_dim // 2
self.corr_mlp = Mlp(
in_features=self.corr_levels * (self.corr_radius * 2 + 1) ** 2,
hidden_features=self.hidden_size,
out_features=self.latent_dim,
)
self.transformer_dim = self.latent_dim + self.latent_dim + self.latent_dim + 4
self.query_ref_token = nn.Parameter(torch.randn(1, 2, self.transformer_dim))
space_depth = depth if use_spaceatt else 0
time_depth = depth
self.updateformer = EfficientUpdateFormer(
space_depth=space_depth,
time_depth=time_depth,
input_dim=self.transformer_dim,
hidden_size=self.hidden_size,
output_dim=self.latent_dim + 2,
mlp_ratio=4.0,
add_space_attn=use_spaceatt,
)
self.fmap_norm = nn.LayerNorm(self.latent_dim)
self.ffeat_norm = nn.GroupNorm(1, self.latent_dim)
# A linear layer to update track feats at each iteration
self.ffeat_updater = nn.Sequential(nn.Linear(self.latent_dim, self.latent_dim), nn.GELU())
self.vis_predictor = nn.Sequential(nn.Linear(self.latent_dim, 1))
if predict_conf:
self.conf_predictor = nn.Sequential(nn.Linear(self.latent_dim, 1))
def forward(self, query_points, fmaps=None, iters=6, return_feat=False, down_ratio=1, apply_sigmoid=True):
"""
query_points: B x N x 2, the number of batches, tracks, and xy
fmaps: B x S x C x HH x WW, the number of batches, frames, and feature dimension.
note HH and WW is the size of feature maps instead of original images
"""
B, N, D = query_points.shape
B, S, C, HH, WW = fmaps.shape
assert D == 2, "Input points must be 2D coordinates"
# apply a layernorm to fmaps here
fmaps = self.fmap_norm(fmaps.permute(0, 1, 3, 4, 2))
fmaps = fmaps.permute(0, 1, 4, 2, 3)
# Scale the input query_points because we may downsample the images
# by down_ratio or self.stride
# e.g., if a 3x1024x1024 image is processed to a 128x256x256 feature map
# its query_points should be query_points/4
if down_ratio > 1:
query_points = query_points / float(down_ratio)
query_points = query_points / float(self.stride)
# Init with coords as the query points
# It means the search will start from the position of query points at the reference frames
coords = query_points.clone().reshape(B, 1, N, 2).repeat(1, S, 1, 1)
# Sample/extract the features of the query points in the query frame
query_track_feat = sample_features4d(fmaps[:, 0], coords[:, 0])
# init track feats by query feats
track_feats = query_track_feat.unsqueeze(1).repeat(1, S, 1, 1) # B, S, N, C
# back up the init coords
coords_backup = coords.clone()
fcorr_fn = CorrBlock(fmaps, num_levels=self.corr_levels, radius=self.corr_radius)
coord_preds = []
# Iterative Refinement
for _ in range(iters):
# Detach the gradients from the last iteration
# (in my experience, not very important for performance)
coords = coords.detach()
fcorrs = fcorr_fn.corr_sample(track_feats, coords)
corr_dim = fcorrs.shape[3]
fcorrs_ = fcorrs.permute(0, 2, 1, 3).reshape(B * N, S, corr_dim)
fcorrs_ = self.corr_mlp(fcorrs_)
# Movement of current coords relative to query points
flows = (coords - coords[:, 0:1]).permute(0, 2, 1, 3).reshape(B * N, S, 2)
flows_emb = get_2d_embedding(flows, self.flows_emb_dim, cat_coords=False)
# (In my trials, it is also okay to just add the flows_emb instead of concat)
flows_emb = torch.cat([flows_emb, flows / self.max_scale, flows / self.max_scale], dim=-1)
track_feats_ = track_feats.permute(0, 2, 1, 3).reshape(B * N, S, self.latent_dim)
# Concatenate them as the input for the transformers
transformer_input = torch.cat([flows_emb, fcorrs_, track_feats_], dim=2)
# 2D positional embed
# TODO: this can be much simplified
pos_embed = get_2d_sincos_pos_embed(self.transformer_dim, grid_size=(HH, WW)).to(query_points.device)
sampled_pos_emb = sample_features4d(pos_embed.expand(B, -1, -1, -1), coords[:, 0])
sampled_pos_emb = rearrange(sampled_pos_emb, "b n c -> (b n) c").unsqueeze(1)
x = transformer_input + sampled_pos_emb
# Add the query ref token to the track feats
query_ref_token = torch.cat(
[self.query_ref_token[:, 0:1], self.query_ref_token[:, 1:2].expand(-1, S - 1, -1)], dim=1
)
x = x + query_ref_token.to(x.device).to(x.dtype)
# B, N, S, C
x = rearrange(x, "(b n) s d -> b n s d", b=B)
# Compute the delta coordinates and delta track features
delta, _ = self.updateformer(x)
# BN, S, C
delta = rearrange(delta, " b n s d -> (b n) s d", b=B)
delta_coords_ = delta[:, :, :2]
delta_feats_ = delta[:, :, 2:]
track_feats_ = track_feats_.reshape(B * N * S, self.latent_dim)
delta_feats_ = delta_feats_.reshape(B * N * S, self.latent_dim)
# Update the track features
track_feats_ = self.ffeat_updater(self.ffeat_norm(delta_feats_)) + track_feats_
track_feats = track_feats_.reshape(B, N, S, self.latent_dim).permute(0, 2, 1, 3) # BxSxNxC
# B x S x N x 2
coords = coords + delta_coords_.reshape(B, N, S, 2).permute(0, 2, 1, 3)
# Force coord0 as query
# because we assume the query points should not be changed
coords[:, 0] = coords_backup[:, 0]
# The predicted tracks are in the original image scale
if down_ratio > 1:
coord_preds.append(coords * self.stride * down_ratio)
else:
coord_preds.append(coords * self.stride)
# B, S, N
vis_e = self.vis_predictor(track_feats.reshape(B * S * N, self.latent_dim)).reshape(B, S, N)
if apply_sigmoid:
vis_e = torch.sigmoid(vis_e)
if self.predict_conf:
conf_e = self.conf_predictor(track_feats.reshape(B * S * N, self.latent_dim)).reshape(B, S, N)
if apply_sigmoid:
conf_e = torch.sigmoid(conf_e)
else:
conf_e = None
if return_feat:
return coord_preds, vis_e, track_feats, query_track_feat, conf_e
else:
return coord_preds, vis_e, conf_e