Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,32 @@
|
|
1 |
-
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
#
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
#
|
24 |
-
#
|
25 |
-
#
|
26 |
-
#
|
27 |
|
28 |
-
|
29 |
-
|
30 |
|
31 |
|
32 |
|
@@ -35,103 +35,103 @@
|
|
35 |
|
36 |
|
37 |
|
38 |
-
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
|
39 |
-
from diffusers.utils import load_image
|
40 |
-
from PIL import Image
|
41 |
-
import torch
|
42 |
-
import numpy as np
|
43 |
-
import cv2
|
44 |
-
import gradio as gr
|
45 |
-
from torchvision import transforms
|
46 |
-
|
47 |
-
controlnet = ControlNetModel.from_pretrained(
|
48 |
-
|
49 |
-
|
50 |
-
).to('cuda')
|
51 |
-
|
52 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
).to('cuda')
|
60 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler(
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
)
|
67 |
-
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
|
68 |
-
pipe.enable_xformers_memory_efficient_attention()
|
69 |
-
pipe.force_zeros_for_empty_prompt = False
|
70 |
-
|
71 |
-
low_threshold = 100
|
72 |
-
high_threshold = 200
|
73 |
-
|
74 |
-
def resize_image(image):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
def get_canny_filter(image):
|
85 |
|
86 |
-
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
|
100 |
|
101 |
-
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
|
110 |
-
block = gr.Blocks().queue()
|
111 |
-
|
112 |
-
with block:
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
|
137 |
-
block.launch(debug = True)
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
|
3 |
+
from __future__ import annotations
|
4 |
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
|
8 |
+
from app_canny import create_demo as create_demo_canny
|
9 |
+
# from app_depth import create_demo as create_demo_depth
|
10 |
+
# from app_recoloring import create_demo as create_demo_recoloring
|
11 |
+
from model import Model
|
12 |
|
13 |
+
DESCRIPTION = "# BRIA 2.2 ControlNets"
|
14 |
|
15 |
+
model = Model(base_model_id='briaai/BRIA-2.2', task_name="Canny")
|
16 |
|
17 |
+
with gr.Blocks(css="style.css") as demo:
|
18 |
+
gr.Markdown(DESCRIPTION)
|
19 |
|
20 |
+
with gr.Tabs():
|
21 |
+
with gr.TabItem("Canny"):
|
22 |
+
create_demo_canny(model.process_canny)
|
23 |
+
# with gr.TabItem("Depth (Future)"):
|
24 |
+
# create_demo_canny(model.process_mlsd)
|
25 |
+
# with gr.TabItem("Recoloring (Future)"):
|
26 |
+
# create_demo_canny(model.process_scribble)
|
27 |
|
28 |
+
if __name__ == "__main__":
|
29 |
+
demo.queue(max_size=20).launch()
|
30 |
|
31 |
|
32 |
|
|
|
35 |
|
36 |
|
37 |
|
38 |
+
# from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
|
39 |
+
# from diffusers.utils import load_image
|
40 |
+
# from PIL import Image
|
41 |
+
# import torch
|
42 |
+
# import numpy as np
|
43 |
+
# import cv2
|
44 |
+
# import gradio as gr
|
45 |
+
# from torchvision import transforms
|
46 |
+
|
47 |
+
# controlnet = ControlNetModel.from_pretrained(
|
48 |
+
# "briaai/BRIA-2.2-ControlNet-Canny",
|
49 |
+
# torch_dtype=torch.float16
|
50 |
+
# ).to('cuda')
|
51 |
+
|
52 |
+
# pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
53 |
+
# "briaai/BRIA-2.2",
|
54 |
+
# controlnet=controlnet,
|
55 |
+
# torch_dtype=torch.float16,
|
56 |
+
# device_map='auto',
|
57 |
+
# low_cpu_mem_usage=True,
|
58 |
+
# offload_state_dict=True,
|
59 |
+
# ).to('cuda')
|
60 |
+
# pipe.scheduler = EulerAncestralDiscreteScheduler(
|
61 |
+
# beta_start=0.00085,
|
62 |
+
# beta_end=0.012,
|
63 |
+
# beta_schedule="scaled_linear",
|
64 |
+
# num_train_timesteps=1000,
|
65 |
+
# steps_offset=1
|
66 |
+
# )
|
67 |
+
# # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
|
68 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
69 |
+
# pipe.force_zeros_for_empty_prompt = False
|
70 |
+
|
71 |
+
# low_threshold = 100
|
72 |
+
# high_threshold = 200
|
73 |
+
|
74 |
+
# def resize_image(image):
|
75 |
+
# image = image.convert('RGB')
|
76 |
+
# current_size = image.size
|
77 |
+
# if current_size[0] > current_size[1]:
|
78 |
+
# center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
|
79 |
+
# else:
|
80 |
+
# center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
|
81 |
+
# resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
|
82 |
+
# return resized_image
|
83 |
+
|
84 |
+
# def get_canny_filter(image):
|
85 |
|
86 |
+
# if not isinstance(image, np.ndarray):
|
87 |
+
# image = np.array(image)
|
88 |
|
89 |
+
# image = cv2.Canny(image, low_threshold, high_threshold)
|
90 |
+
# image = image[:, :, None]
|
91 |
+
# image = np.concatenate([image, image, image], axis=2)
|
92 |
+
# canny_image = Image.fromarray(image)
|
93 |
+
# return canny_image
|
94 |
+
|
95 |
+
# def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
|
96 |
+
# generator = torch.manual_seed(seed)
|
97 |
|
98 |
+
# # resize input_image to 1024x1024
|
99 |
+
# input_image = resize_image(input_image)
|
100 |
|
101 |
+
# canny_image = get_canny_filter(input_image)
|
102 |
|
103 |
+
# images = pipe(
|
104 |
+
# prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
105 |
+
# generator=generator,
|
106 |
+
# ).images
|
107 |
|
108 |
+
# return [canny_image,images[0]]
|
109 |
|
110 |
+
# block = gr.Blocks().queue()
|
111 |
+
|
112 |
+
# with block:
|
113 |
+
# gr.Markdown("## BRIA 2.2 ControlNet Canny")
|
114 |
+
# gr.HTML('''
|
115 |
+
# <p style="margin-bottom: 10px; font-size: 94%">
|
116 |
+
# This is a demo for ControlNet Canny that using
|
117 |
+
# <a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone.
|
118 |
+
# Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement.
|
119 |
+
# </p>
|
120 |
+
# ''')
|
121 |
+
# with gr.Row():
|
122 |
+
# with gr.Column():
|
123 |
+
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
|
124 |
+
# prompt = gr.Textbox(label="Prompt")
|
125 |
+
# negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
|
126 |
+
# num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
|
127 |
+
# controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
|
128 |
+
# seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
|
129 |
+
# run_button = gr.Button(value="Run")
|
130 |
|
131 |
|
132 |
+
# with gr.Column():
|
133 |
+
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
|
134 |
+
# ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
|
135 |
+
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
136 |
|
137 |
+
# block.launch(debug = True)
|