Spaces:
Running
Running
seansullivan
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from getpass import getpass
|
2 |
+
from langchain_openai import OpenAIEmbeddings
|
3 |
+
|
4 |
+
from pinecone import Pinecone
|
5 |
+
|
6 |
+
from pinecone_text.sparse import SpladeEncoder
|
7 |
+
from langchain_community.retrievers import PineconeHybridSearchRetriever
|
8 |
+
|
9 |
+
import os
|
10 |
+
|
11 |
+
from langchain_core.output_parsers import StrOutputParser
|
12 |
+
from langchain_core.prompts import ChatPromptTemplate
|
13 |
+
from langchain_core.runnables import RunnableParallel, RunnablePassthrough, Runnable
|
14 |
+
from langchain_anthropic import ChatAnthropic
|
15 |
+
|
16 |
+
import streamlit as st
|
17 |
+
|
18 |
+
# Streamlit App Configuration (gets model_name, index_name, namespace_name before needed)
|
19 |
+
st.set_page_config(page_title="Chat with HiPerGator Docs", page_icon="🟩")
|
20 |
+
st.markdown("<h1 style='text-align: center;'>How can I help you?:</h1>", unsafe_allow_html=True)
|
21 |
+
|
22 |
+
st.sidebar.title("Options")
|
23 |
+
model_name = "claude-3-haiku-20240307"
|
24 |
+
|
25 |
+
|
26 |
+
# ========== PART 1 ==========
|
27 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
28 |
+
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
|
29 |
+
PINE_API_KEY = os.getenv("PINE_API_KEY")
|
30 |
+
|
31 |
+
embed = OpenAIEmbeddings(
|
32 |
+
model='text-embedding-3-small',
|
33 |
+
openai_api_key=OPENAI_API_KEY,
|
34 |
+
dimensions = 768
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
# ========== PART 2 ==========
|
39 |
+
index_name='splade'
|
40 |
+
namespace_name='HiPerGator'
|
41 |
+
pc = Pinecone(api_key=PINE_API_KEY)
|
42 |
+
index = pc.Index(index_name)
|
43 |
+
|
44 |
+
# ========== PART 3 ==========
|
45 |
+
splade_encoder = SpladeEncoder()
|
46 |
+
retriever = PineconeHybridSearchRetriever(
|
47 |
+
embeddings=embed, sparse_encoder=splade_encoder, index=index
|
48 |
+
)
|
49 |
+
|
50 |
+
# ========== PART 4 ==========
|
51 |
+
# RAG prompt
|
52 |
+
template = """You are an expert in HiPerGator (University of Florida's Super Computer) who has access to it's dense documentation. Please use the given context from the documentation to happily assist the user with their question:
|
53 |
+
Question: {question}
|
54 |
+
{context}
|
55 |
+
"""
|
56 |
+
prompt = ChatPromptTemplate.from_template(template)
|
57 |
+
|
58 |
+
# Haiku
|
59 |
+
model = ChatAnthropic(temperature=0, anthropic_api_key=ANTHROPIC_API_KEY, model_name="claude-3-haiku-20240307")
|
60 |
+
|
61 |
+
class SourceDedup(Runnable):
|
62 |
+
def invoke(self, input, config=None):
|
63 |
+
assert isinstance(input, dict)
|
64 |
+
documents = input["context"]
|
65 |
+
unique_sources = set()
|
66 |
+
unique_documents = []
|
67 |
+
|
68 |
+
for doc in documents:
|
69 |
+
source = doc.metadata["source"]
|
70 |
+
if source not in unique_sources:
|
71 |
+
unique_sources.add(source)
|
72 |
+
unique_documents.append(doc)
|
73 |
+
input["context"] = unique_documents
|
74 |
+
return input
|
75 |
+
|
76 |
+
class PassParentContent(Runnable):
|
77 |
+
def invoke(self, input, config=None):
|
78 |
+
assert isinstance(input, dict)
|
79 |
+
documents = input["context"]
|
80 |
+
|
81 |
+
for doc in documents:
|
82 |
+
if "parent_content" in doc.metadata:
|
83 |
+
doc.page_content = doc.metadata["parent_content"]
|
84 |
+
return input
|
85 |
+
|
86 |
+
rag_chain = (
|
87 |
+
RunnablePassthrough()
|
88 |
+
# | SourceDedup()
|
89 |
+
# | PassParentContent()
|
90 |
+
| prompt
|
91 |
+
| model
|
92 |
+
| StrOutputParser()
|
93 |
+
)
|
94 |
+
|
95 |
+
rag_chain_with_source = RunnableParallel(
|
96 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
97 |
+
).assign(answer=rag_chain)
|
98 |
+
|
99 |
+
def generate_response(prompt):
|
100 |
+
start = "Answer: "
|
101 |
+
st.session_state['generated'].append(start)
|
102 |
+
yield start
|
103 |
+
|
104 |
+
for chunk in rag_chain_with_source.stream(prompt):
|
105 |
+
|
106 |
+
if list(chunk.keys())[0] == 'answer':
|
107 |
+
st.session_state['generated'][-1] += chunk['answer']
|
108 |
+
yield chunk['answer']
|
109 |
+
|
110 |
+
elif list(chunk.keys())[0] == 'context':
|
111 |
+
pass
|
112 |
+
# Sources DO NOT work the same with this code... removing for now.
|
113 |
+
# sources = chunk['context']
|
114 |
+
#for thing in chunk['context']:
|
115 |
+
#print()
|
116 |
+
#print(thing.metadata)
|
117 |
+
#sources = [doc.metadata['source'] for doc in chunk['context']]
|
118 |
+
|
119 |
+
#response = rag_chain_with_source.invoke(prompt)
|
120 |
+
#answer = response["answer"]
|
121 |
+
#sources_txt = "\n\nSources:\n" + "\n".join(sources)
|
122 |
+
#yield sources_txt
|
123 |
+
|
124 |
+
#question = "How can I do hybrid search with a pinecone database?"
|
125 |
+
#answer = generate_response(question)
|
126 |
+
#print(answer)
|
127 |
+
|
128 |
+
# ==================== THE REST OF THE STREAMLIT APP ====================
|
129 |
+
|
130 |
+
# Initialize session state variables if they don't exist
|
131 |
+
if 'generated' not in st.session_state:
|
132 |
+
st.session_state['generated'] = []
|
133 |
+
|
134 |
+
if 'past' not in st.session_state:
|
135 |
+
st.session_state['past'] = []
|
136 |
+
|
137 |
+
if 'messages' not in st.session_state:
|
138 |
+
st.session_state['messages'] = [{"role": "system", "content": "You are a helpful assistant."}]
|
139 |
+
|
140 |
+
if 'total_cost' not in st.session_state:
|
141 |
+
st.session_state['total_cost'] = 0.0
|
142 |
+
|
143 |
+
def refresh_text():
|
144 |
+
with response_container:
|
145 |
+
for i in range(len(st.session_state['past'])):
|
146 |
+
try:
|
147 |
+
user_message_content = st.session_state["past"][i]
|
148 |
+
message = st.chat_message("user")
|
149 |
+
message.write(user_message_content)
|
150 |
+
except:
|
151 |
+
print("Past error")
|
152 |
+
|
153 |
+
try:
|
154 |
+
ai_message_content = st.session_state["generated"][i]
|
155 |
+
message = st.chat_message("assistant")
|
156 |
+
message.write(ai_message_content)
|
157 |
+
except:
|
158 |
+
print("Generated Error")
|
159 |
+
|
160 |
+
response_container = st.container()
|
161 |
+
container = st.container()
|
162 |
+
|
163 |
+
if prompt := st.chat_input("Ask a question..."):
|
164 |
+
st.session_state['past'].append(prompt)
|
165 |
+
refresh_text()
|
166 |
+
|
167 |
+
st.session_state['messages'].append({"role": "user", "content": prompt})
|
168 |
+
with response_container:
|
169 |
+
my_generator = generate_response(prompt)
|
170 |
+
message = st.chat_message("assistant")
|
171 |
+
message.write_stream(my_generator)
|
172 |
+
|
173 |
+
if __name__ == "__main__":
|
174 |
+
#result = retriever.get_relevant_documents("foo")
|
175 |
+
#print(result[0].page_content)
|
176 |
+
pass
|