document_redaction / tools /file_redaction.py
seanpedrickcase's picture
Side review bar is mostly there. A couple of bugs fixed. Can now return identified text in initial review files. Still working on retaining found text throughout review process
a03496e
raw
history blame
103 kB
import time
import re
import json
import io
import os
import boto3
import copy
from tqdm import tqdm
from PIL import Image, ImageChops, ImageFile, ImageDraw
ImageFile.LOAD_TRUNCATED_IMAGES = True
from typing import List, Dict, Tuple
import pandas as pd
#from presidio_image_redactor.entities import ImageRecognizerResult
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer, LTChar, LTTextLine, LTTextLineHorizontal, LTAnno
from pikepdf import Pdf, Dictionary, Name
import pymupdf
from pymupdf import Rect
from fitz import Page
import gradio as gr
from gradio import Progress
from collections import defaultdict # For efficient grouping
from presidio_analyzer import RecognizerResult
from tools.aws_functions import RUN_AWS_FUNCTIONS
from tools.custom_image_analyser_engine import CustomImageAnalyzerEngine, OCRResult, combine_ocr_results, CustomImageRecognizerResult
from tools.file_conversion import process_file, image_dpi, convert_review_json_to_pandas_df, redact_whole_pymupdf_page, redact_single_box, convert_pymupdf_to_image_coords
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold, custom_entities, custom_recogniser, custom_word_list_recogniser
from tools.helper_functions import get_file_path_end, output_folder, clean_unicode_text, get_or_create_env_var, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector
from tools.file_conversion import process_file, is_pdf, is_pdf_or_image
from tools.aws_textract import analyse_page_with_textract, json_to_ocrresult
from tools.presidio_analyzer_custom import recognizer_result_from_dict
# Number of pages to loop through before breaking. Currently set very high, as functions are breaking on time metrics (e.g. every 105 seconds), rather than on number of pages redacted.
page_break_value = get_or_create_env_var('page_break_value', '50000')
print(f'The value of page_break_value is {page_break_value}')
max_time_value = get_or_create_env_var('max_time_value', '999999')
print(f'The value of max_time_value is {max_time_value}')
def bounding_boxes_overlap(box1, box2):
"""Check if two bounding boxes overlap."""
return (box1[0] < box2[2] and box2[0] < box1[2] and
box1[1] < box2[3] and box2[1] < box1[3])
def sum_numbers_before_seconds(string:str):
"""Extracts numbers that precede the word 'seconds' from a string and adds them up.
Args:
string: The input string.
Returns:
The sum of all numbers before 'seconds' in the string.
"""
# Extract numbers before 'seconds' using regular expression
numbers = re.findall(r'(\d+\.\d+)?\s*seconds', string)
# Extract the numbers from the matches
numbers = [float(num.split()[0]) for num in numbers]
# Sum up the extracted numbers
sum_of_numbers = round(sum(numbers),1)
return sum_of_numbers
def choose_and_run_redactor(file_paths:List[str],
prepared_pdf_file_paths:List[str],
prepared_pdf_image_paths:List[str],
language:str,
chosen_redact_entities:List[str],
chosen_redact_comprehend_entities:List[str],
in_redact_method:str,
in_allow_list:List[List[str]]=None,
custom_recogniser_word_list:List[str]=None,
redact_whole_page_list:List[str]=None,
latest_file_completed:int=0,
out_message:list=[],
out_file_paths:list=[],
log_files_output_paths:list=[],
first_loop_state:bool=False,
page_min:int=0,
page_max:int=999,
estimated_time_taken_state:float=0.0,
handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"],
all_request_metadata_str:str = "",
annotations_all_pages:dict={},
all_line_level_ocr_results_df=[],
all_decision_process_table=[],
pymupdf_doc=[],
current_loop_page:int=0,
page_break_return:bool=False,
pii_identification_method:str="Local",
comprehend_query_number:int=0,
output_folder:str=output_folder,
progress=gr.Progress(track_tqdm=True)):
'''
This function orchestrates the redaction process based on the specified method and parameters. It takes the following inputs:
- file_paths (List[str]): A list of paths to the files to be redacted.
- prepared_pdf_file_paths (List[str]): A list of paths to the PDF files prepared for redaction.
- prepared_pdf_image_paths (List[str]): A list of paths to the PDF files converted to images for redaction.
- language (str): The language of the text in the files.
- chosen_redact_entities (List[str]): A list of entity types to redact from the files using the local model (spacy) with Microsoft Presidio.
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service
- in_redact_method (str): The method to use for redaction.
- in_allow_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None.
- custom_recogniser_word_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None.
- redact_whole_page_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None.
- latest_file_completed (int, optional): The index of the last completed file. Defaults to 0.
- out_message (list, optional): A list to store output messages. Defaults to an empty list.
- out_file_paths (list, optional): A list to store paths to the output files. Defaults to an empty list.
- log_files_output_paths (list, optional): A list to store paths to the log files. Defaults to an empty list.
- first_loop_state (bool, optional): A flag indicating if this is the first iteration. Defaults to False.
- page_min (int, optional): The minimum page number to start redaction from. Defaults to 0.
- page_max (int, optional): The maximum page number to end redaction at. Defaults to 999.
- estimated_time_taken_state (float, optional): The estimated time taken for the redaction process. Defaults to 0.0.
- handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Redact all identified handwriting", "Redact all identified signatures"].
- all_request_metadata_str (str, optional): A string containing all request metadata. Defaults to an empty string.
- annotations_all_pages (dict, optional): A dictionary containing all image annotations. Defaults to an empty dictionary.
- all_line_level_ocr_results_df (optional): A DataFrame containing all line-level OCR results. Defaults to an empty DataFrame.
- all_decision_process_table (optional): A DataFrame containing all decision process tables. Defaults to an empty DataFrame.
- pymupdf_doc (optional): A list containing the PDF document object. Defaults to an empty list.
- current_loop_page (int, optional): The current page being processed in the loop. Defaults to 0.
- page_break_return (bool, optional): A flag indicating if the function should return after a page break. Defaults to False.
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
- output_folder (str, optional): Output folder for results.
- progress (gr.Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True.
The function returns a redacted document along with processing logs.
'''
combined_out_message = ""
tic = time.perf_counter()
all_request_metadata = all_request_metadata_str.split('\n') if all_request_metadata_str else []
if isinstance(custom_recogniser_word_list, pd.DataFrame):
custom_recogniser_word_list = custom_recogniser_word_list.iloc[:,0].tolist()
# Sort the strings in order from the longest string to the shortest
custom_recogniser_word_list = sorted(custom_recogniser_word_list, key=len, reverse=True)
if isinstance(redact_whole_page_list, pd.DataFrame):
redact_whole_page_list = redact_whole_page_list.iloc[:,0].tolist()
# If this is the first time around, set variables to 0/blank
if first_loop_state==True:
#print("First_loop_state is True")
latest_file_completed = 0
current_loop_page = 0
out_file_paths = []
estimate_total_processing_time = 0
estimated_time_taken_state = 0
# If not the first time around, and the current page loop has been set to a huge number (been through all pages), reset current page to 0
elif (first_loop_state == False) & (current_loop_page == 999):
current_loop_page = 0
if not out_file_paths:
out_file_paths = []
latest_file_completed = int(latest_file_completed)
number_of_pages = len(prepared_pdf_image_paths)
if isinstance(file_paths,str):
number_of_files = 1
else:
number_of_files = len(file_paths)
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_file_completed >= number_of_files:
print("Completed last file")
# Set to a very high number so as not to mix up with subsequent file processing by the user
# latest_file_completed = 99
current_loop_page = 0
if isinstance(out_message, list):
combined_out_message = '\n'.join(out_message)
else:
combined_out_message = out_message
estimate_total_processing_time = sum_numbers_before_seconds(combined_out_message)
print("Estimated total processing time:", str(estimate_total_processing_time))
return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
# If we have reached the last page, return message
if current_loop_page >= number_of_pages:
print("current_loop_page:", current_loop_page, "is equal to or greater than number of pages in document:", number_of_pages)
# Set to a very high number so as not to mix up with subsequent file processing by the user
current_loop_page = 999
combined_out_message = out_message
return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = False, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
# Create allow list
# If string, assume file path
if isinstance(in_allow_list, str):
in_allow_list = pd.read_csv(in_allow_list)
if not in_allow_list.empty:
in_allow_list_flat = in_allow_list.iloc[:,0].tolist()
#print("In allow list:", in_allow_list_flat)
else:
in_allow_list_flat = []
# Try to connect to AWS services only if RUN_AWS_FUNCTIONS environmental variable is 1
if pii_identification_method == "AWS Comprehend":
print("Trying to connect to AWS Comprehend service")
if RUN_AWS_FUNCTIONS == "1":
comprehend_client = boto3.client('comprehend')
else:
comprehend_client = ""
out_message = "Cannot connect to AWS Comprehend service. Please choose another PII identification method."
print(out_message)
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
else:
comprehend_client = ""
if in_redact_method == textract_option:
print("Trying to connect to AWS Comprehend service")
if RUN_AWS_FUNCTIONS == "1":
textract_client = boto3.client('textract')
else:
textract_client = ""
out_message = "Cannot connect to AWS Textract. Please choose another text extraction method."
print(out_message)
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
else:
textract_client = ""
# Check if output_folder exists, create it if it doesn't
if not os.path.exists(output_folder):
os.makedirs(output_folder)
progress(0.5, desc="Redacting file")
if isinstance(file_paths, str):
file_paths_list = [os.path.abspath(file_paths)]
file_paths_loop = file_paths_list
elif isinstance(file_paths, dict):
file_paths = file_paths["name"]
file_paths_list = [os.path.abspath(file_paths)]
file_paths_loop = file_paths_list
else:
file_paths_list = file_paths
file_paths_loop = [file_paths_list[int(latest_file_completed)]]
# print("file_paths_list in choose_redactor function:", file_paths_list)
for file in file_paths_loop:
if isinstance(file, str):
file_path = file
else:
file_path = file.name
if file_path:
file_path_without_ext = get_file_path_end(file_path)
print("Redacting file:", file_path_without_ext)
is_a_pdf = is_pdf(file_path) == True
if is_a_pdf == False:
# If user has not submitted a pdf, assume it's an image
print("File is not a pdf, assuming that image analysis needs to be used.")
in_redact_method = tesseract_ocr_option
else:
out_message = "No file selected"
print(out_message)
return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
if in_redact_method == tesseract_ocr_option or in_redact_method == textract_option:
#Analyse and redact image-based pdf or image
if is_pdf_or_image(file_path) == False:
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
print("Redacting file " + file_path_without_ext + " as an image-based file")
pymupdf_doc,all_decision_process_table,log_files_output_paths,new_request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number = redact_image_pdf(file_path,
prepared_pdf_image_paths,
language,
chosen_redact_entities,
chosen_redact_comprehend_entities,
in_allow_list_flat,
is_a_pdf,
page_min,
page_max,
in_redact_method,
handwrite_signature_checkbox,
"",
current_loop_page,
page_break_return,
prepared_pdf_image_paths,
annotations_all_pages,
all_line_level_ocr_results_df,
all_decision_process_table,
pymupdf_doc,
pii_identification_method,
comprehend_query_number,
comprehend_client,
textract_client,
custom_recogniser_word_list,
redact_whole_page_list)
# Save Textract request metadata (if exists)
if new_request_metadata:
print("Request metadata:", new_request_metadata)
all_request_metadata.append(new_request_metadata)
elif in_redact_method == text_ocr_option:
#log_files_output_paths = []
if is_pdf(file_path) == False:
out_message = "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'."
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
# Analyse text-based pdf
print('Redacting file as text-based PDF')
pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number = redact_text_pdf(file_path,
prepared_pdf_image_paths,language,
chosen_redact_entities,
chosen_redact_comprehend_entities,
in_allow_list_flat,
page_min,
page_max,
text_ocr_option,
current_loop_page,
page_break_return,
annotations_all_pages,
all_line_level_ocr_results_df,
all_decision_process_table,
pymupdf_doc,
pii_identification_method,
comprehend_query_number,
comprehend_client,
custom_recogniser_word_list,
redact_whole_page_list)
else:
out_message = "No redaction method selected"
print(out_message)
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
# If at last page, save to file
if current_loop_page >= number_of_pages:
print("Current page loop:", current_loop_page, "is greater or equal to number of pages:", number_of_pages)
latest_file_completed += 1
current_loop_page = 999
if latest_file_completed != len(file_paths_list):
print("Completed file number:", str(latest_file_completed), "there are more files to do")
# Save file
if is_pdf(file_path) == False:
out_image_file_path = output_folder + file_path_without_ext + "_redacted_as_pdf.pdf"
pymupdf_doc[0].save(out_image_file_path, "PDF" ,resolution=image_dpi, save_all=False)#, append_images=pymupdf_doc[:1])
else:
out_image_file_path = output_folder + file_path_without_ext + "_redacted.pdf"
pymupdf_doc.save(out_image_file_path)
out_file_paths.append(out_image_file_path)
#if log_files_output_paths:
# log_files_output_paths.extend(log_files_output_paths)
logs_output_file_name = out_image_file_path + "_decision_process_output.csv"
all_decision_process_table.to_csv(logs_output_file_name, index = None, encoding="utf-8")
log_files_output_paths.append(logs_output_file_name)
all_text_output_file_name = out_image_file_path + "_ocr_output.csv"
all_line_level_ocr_results_df.to_csv(all_text_output_file_name, index = None, encoding="utf-8")
out_file_paths.append(all_text_output_file_name)
# Save the gradio_annotation_boxes to a JSON file
try:
print("Saving annotations to JSON")
out_annotation_file_path = out_image_file_path + '_review_file.json'
with open(out_annotation_file_path, 'w') as f:
json.dump(annotations_all_pages, f)
log_files_output_paths.append(out_annotation_file_path)
#print("Saving annotations to CSV")
# Convert json to csv and also save this
#print("annotations_all_pages:", annotations_all_pages)
review_df = convert_review_json_to_pandas_df(annotations_all_pages, all_decision_process_table)
out_review_file_file_path = out_image_file_path + '_review_file.csv'
review_df.to_csv(out_review_file_file_path, index=None)
out_file_paths.append(out_review_file_file_path)
print("Saved review file to csv")
except Exception as e:
print("Could not save annotations to json file:", e)
# Make a combined message for the file
if isinstance(out_message, list):
combined_out_message = '\n'.join(out_message) # Ensure out_message is a list of strings
else: combined_out_message = out_message
toc = time.perf_counter()
time_taken = toc - tic
estimated_time_taken_state = estimated_time_taken_state + time_taken
out_time_message = f" Redacted in {estimated_time_taken_state:0.1f} seconds."
combined_out_message = combined_out_message + " " + out_time_message # Ensure this is a single string
estimate_total_processing_time = sum_numbers_before_seconds(combined_out_message)
print("Estimated total processing time:", str(estimate_total_processing_time))
else:
toc = time.perf_counter()
time_taken = toc - tic
estimated_time_taken_state = estimated_time_taken_state + time_taken
# If textract requests made, write to logging file
if all_request_metadata:
all_request_metadata_str = '\n'.join(all_request_metadata).strip()
all_request_metadata_file_path = output_folder + file_path_without_ext + "_textract_request_metadata.txt"
with open(all_request_metadata_file_path, "w") as f:
f.write(all_request_metadata_str)
# Add the request metadata to the log outputs if not there already
if all_request_metadata_file_path not in log_files_output_paths:
log_files_output_paths.append(all_request_metadata_file_path)
if combined_out_message: out_message = combined_out_message
#print("\nout_message at choose_and_run_redactor end is:", out_message)
# Ensure no duplicated output files
log_files_output_paths = list(set(log_files_output_paths))
out_file_paths = list(set(out_file_paths))
return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number
def convert_pikepdf_coords_to_pymupdf(pymupdf_page, pikepdf_bbox, type="pikepdf_annot"):
'''
Convert annotations from pikepdf to pymupdf format, handling the mediabox larger than rect.
'''
# Use cropbox if available, otherwise use mediabox
reference_box = pymupdf_page.rect
mediabox = pymupdf_page.mediabox
reference_box_height = reference_box.height
reference_box_width = reference_box.width
# Convert PyMuPDF coordinates back to PDF coordinates (bottom-left origin)
media_height = mediabox.height
media_width = mediabox.width
media_reference_y_diff = media_height - reference_box_height
media_reference_x_diff = media_width - reference_box_width
y_diff_ratio = media_reference_y_diff / reference_box_height
x_diff_ratio = media_reference_x_diff / reference_box_width
# Extract the annotation rectangle field
if type=="pikepdf_annot":
rect_field = pikepdf_bbox["/Rect"]
else:
rect_field = pikepdf_bbox
rect_coordinates = [float(coord) for coord in rect_field] # Convert to floats
# Unpack coordinates
x1, y1, x2, y2 = rect_coordinates
new_x1 = x1 - (media_reference_x_diff * x_diff_ratio)
new_y1 = media_height - y2 - (media_reference_y_diff * y_diff_ratio)
new_x2 = x2 - (media_reference_x_diff * x_diff_ratio)
new_y2 = media_height - y1 - (media_reference_y_diff * y_diff_ratio)
return new_x1, new_y1, new_x2, new_y2
def convert_pikepdf_to_image_coords(pymupdf_page, annot, image:Image, type="pikepdf_annot"):
'''
Convert annotations from pikepdf coordinates to image coordinates.
'''
# Get the dimensions of the page in points with pymupdf
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
# Get the dimensions of the image
image_page_width, image_page_height = image.size
# Calculate scaling factors between pymupdf and PIL image
scale_width = image_page_width / rect_width
scale_height = image_page_height / rect_height
# Extract the /Rect field
if type=="pikepdf_annot":
rect_field = annot["/Rect"]
else:
rect_field = annot
# Convert the extracted /Rect field to a list of floats
rect_coordinates = [float(coord) for coord in rect_field]
# Convert the Y-coordinates (flip using the image height)
x1, y1, x2, y2 = rect_coordinates
x1_image = x1 * scale_width
new_y1_image = image_page_height - (y2 * scale_height) # Flip Y0 (since it starts from bottom)
x2_image = x2 * scale_width
new_y2_image = image_page_height - (y1 * scale_height) # Flip Y1
return x1_image, new_y1_image, x2_image, new_y2_image
def convert_pikepdf_decision_output_to_image_coords(pymupdf_page, pikepdf_decision_ouput_data:List, image):
if isinstance(image, str):
image_path = image
image = Image.open(image_path)
# Loop through each item in the data
for item in pikepdf_decision_ouput_data:
# Extract the bounding box
bounding_box = item['boundingBox']
# Create a pikepdf_bbox dictionary to match the expected input
pikepdf_bbox = {"/Rect": bounding_box}
# Call the conversion function
new_x1, new_y1, new_x2, new_y2 = convert_pikepdf_to_image_coords(pymupdf_page, pikepdf_bbox, image, type="pikepdf_annot")
# Update the original object with the new bounding box values
item['boundingBox'] = [new_x1, new_y1, new_x2, new_y2]
return pikepdf_decision_ouput_data
def convert_image_coords_to_pymupdf(pymupdf_page, annot, image:Image, type="image_recognizer"):
'''
Converts an image with redaction coordinates from a CustomImageRecognizerResult or pikepdf object with image coordinates to pymupdf coordinates.
'''
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
image_page_width, image_page_height = image.size
# Calculate scaling factors between PIL image and pymupdf
scale_width = rect_width / image_page_width
scale_height = rect_height / image_page_height
# Calculate scaled coordinates
if type == "image_recognizer":
x1 = (annot.left * scale_width)# + page_x_adjust
new_y1 = (annot.top * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom)
x2 = ((annot.left + annot.width) * scale_width)# + page_x_adjust # Calculate x1
new_y2 = ((annot.top + annot.height) * scale_height)# - page_y_adjust # Calculate y1 correctly
# Else assume it is a pikepdf derived object
else:
rect_field = annot["/Rect"]
rect_coordinates = [float(coord) for coord in rect_field] # Convert to floats
# Unpack coordinates
x1, y1, x2, y2 = rect_coordinates
#print("scale_width:", scale_width)
#print("scale_height:", scale_height)
x1 = (x1* scale_width)# + page_x_adjust
new_y1 = ((y2 + (y1 - y2))* scale_height)# - page_y_adjust # Calculate y1 correctly
x2 = ((x1 + (x2 - x1)) * scale_width)# + page_x_adjust # Calculate x1
new_y2 = (y2 * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom)
return x1, new_y1, x2, new_y2
def convert_gradio_annotation_coords_to_pymupdf(pymupdf_page:Page, annot:dict, image:Image):
'''
Converts an image with redaction coordinates from a gradio annotation component to pymupdf coordinates.
'''
rect_height = pymupdf_page.rect.height
rect_width = pymupdf_page.rect.width
image_page_width, image_page_height = image.size
# Calculate scaling factors between PIL image and pymupdf
scale_width = rect_width / image_page_width
scale_height = rect_height / image_page_height
# Calculate scaled coordinates
x1 = (annot["xmin"] * scale_width)# + page_x_adjust
new_y1 = (annot["ymin"] * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom)
x2 = ((annot["xmax"]) * scale_width)# + page_x_adjust # Calculate x1
new_y2 = ((annot["ymax"]) * scale_height)# - page_y_adjust # Calculate y1 correctly
return x1, new_y1, x2, new_y2
def move_page_info(file_path: str) -> str:
# Split the string at '.png'
base, extension = file_path.rsplit('.pdf', 1)
# Extract the page info
page_info = base.split('page ')[1].split(' of')[0] # Get the page number
new_base = base.replace(f'page {page_info} of ', '') # Remove the page info from the original position
# Construct the new file path
new_file_path = f"{new_base}_page_{page_info}.png"
return new_file_path
def redact_page_with_pymupdf(page:Page, page_annotations:dict, image=None, custom_colours:bool=False, redact_whole_page:bool=False, convert_coords:bool=True):
mediabox_height = page.mediabox[3] - page.mediabox[1]
mediabox_width = page.mediabox[2] - page.mediabox[0]
rect_height = page.rect.height
rect_width = page.rect.width
pymupdf_x1 = None
pymupdf_x2 = None
out_annotation_boxes = {}
all_image_annotation_boxes = []
image_path = ""
if isinstance(image, Image.Image):
image_path = move_page_info(str(page))
image.save(image_path)
elif isinstance(image, str):
image_path = image
image = Image.open(image_path)
# Check if this is an object used in the Gradio Annotation component
if isinstance (page_annotations, dict):
page_annotations = page_annotations["boxes"]
for annot in page_annotations:
# Check if an Image recogniser result, or a Gradio annotation object
if (isinstance(annot, CustomImageRecognizerResult)) | isinstance(annot, dict):
img_annotation_box = {}
# Should already be in correct format if img_annotator_box is an input
if isinstance(annot, dict):
img_annotation_box = annot
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_gradio_annotation_coords_to_pymupdf(page, annot, image)
x1 = pymupdf_x1
x2 = pymupdf_x2
# if hasattr(annot, 'text') and annot.text:
# img_annotation_box["text"] = annot.text
# else:
# img_annotation_box["text"] = ""
# Else should be CustomImageRecognizerResult
else:
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image)
x1 = pymupdf_x1
x2 = pymupdf_x2
img_annotation_box["xmin"] = annot.left
img_annotation_box["ymin"] = annot.top
img_annotation_box["xmax"] = annot.left + annot.width
img_annotation_box["ymax"] = annot.top + annot.height
img_annotation_box["color"] = (0,0,0)
try:
img_annotation_box["label"] = annot.entity_type
except:
img_annotation_box["label"] = "Redaction"
# if hasattr(annot, 'text') and annot.text:
# img_annotation_box["text"] = annot.text
# else:
# img_annotation_box["text"] = ""
rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2) # Create the PyMuPDF Rect
# Else it should be a pikepdf annotation object
else:
if convert_coords == True:
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_pikepdf_coords_to_pymupdf(page, annot)
else:
pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image, type="pikepdf_image_coords")
x1 = pymupdf_x1
x2 = pymupdf_x2
rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2)
img_annotation_box = {}
if image:
img_width, img_height = image.size
print("annot:", annot)
x1, image_y1, x2, image_y2 = convert_pymupdf_to_image_coords(page, x1, pymupdf_y1, x2, pymupdf_y2, image)
img_annotation_box["xmin"] = x1 #* (img_width / rect_width) # Use adjusted x1
img_annotation_box["ymin"] = image_y1 #* (img_width / rect_width) # Use adjusted y1
img_annotation_box["xmax"] = x2# * (img_height / rect_height) # Use adjusted x2
img_annotation_box["ymax"] = image_y2 #* (img_height / rect_height) # Use adjusted y2
img_annotation_box["color"] = (0, 0, 0)
if isinstance(annot, Dictionary):
img_annotation_box["label"] = str(annot["/T"])
else:
img_annotation_box["label"] = "REDACTION"
# if hasattr(annot, 'text') and annot.text:
# img_annotation_box["text"] = annot.text
# else:
# img_annotation_box["text"] = ""
# Convert to a PyMuPDF Rect object
#rect = Rect(rect_coordinates)
all_image_annotation_boxes.append(img_annotation_box)
redact_single_box(page, rect, img_annotation_box, custom_colours)
# If whole page is to be redacted, do that here
if redact_whole_page == True:
whole_page_img_annotation_box = redact_whole_pymupdf_page(rect_height, rect_width, image, page, custom_colours, border = 5)
all_image_annotation_boxes.append(whole_page_img_annotation_box)
out_annotation_boxes = {
"image": image_path, #Image.open(image_path), #image_path,
"boxes": all_image_annotation_boxes
}
page.apply_redactions(images=0, graphics=0)
page.clean_contents()
return page, out_annotation_boxes
def merge_img_bboxes(bboxes, combined_results: Dict, signature_recogniser_results=[], handwriting_recogniser_results=[], handwrite_signature_checkbox: List[str]=["Redact all identified handwriting", "Redact all identified signatures"], horizontal_threshold:int=50, vertical_threshold:int=12):
all_bboxes = []
merged_bboxes = []
grouped_bboxes = defaultdict(list)
# Deep copy original bounding boxes to retain them
original_bboxes = copy.deepcopy(bboxes)
# Process signature and handwriting results
if signature_recogniser_results or handwriting_recogniser_results:
if "Redact all identified handwriting" in handwrite_signature_checkbox:
merged_bboxes.extend(copy.deepcopy(handwriting_recogniser_results))
if "Redact all identified signatures" in handwrite_signature_checkbox:
merged_bboxes.extend(copy.deepcopy(signature_recogniser_results))
# Reconstruct bounding boxes for substrings of interest
reconstructed_bboxes = []
for bbox in bboxes:
bbox_box = (bbox.left, bbox.top, bbox.left + bbox.width, bbox.top + bbox.height)
for line_text, line_info in combined_results.items():
line_box = line_info['bounding_box']
if bounding_boxes_overlap(bbox_box, line_box):
if bbox.text in line_text:
start_char = line_text.index(bbox.text)
end_char = start_char + len(bbox.text)
relevant_words = []
current_char = 0
for word in line_info['words']:
word_end = current_char + len(word['text'])
if current_char <= start_char < word_end or current_char < end_char <= word_end or (start_char <= current_char and word_end <= end_char):
relevant_words.append(word)
if word_end >= end_char:
break
current_char = word_end
if not word['text'].endswith(' '):
current_char += 1 # +1 for space if the word doesn't already end with a space
if relevant_words:
left = min(word['bounding_box'][0] for word in relevant_words)
top = min(word['bounding_box'][1] for word in relevant_words)
right = max(word['bounding_box'][2] for word in relevant_words)
bottom = max(word['bounding_box'][3] for word in relevant_words)
combined_text = " ".join(word['text'] for word in relevant_words)
reconstructed_bbox = CustomImageRecognizerResult(
bbox.entity_type,
bbox.start,
bbox.end,
bbox.score,
left,
top,
right - left, # width
bottom - top, # height,
combined_text
)
#reconstructed_bboxes.append(bbox) # Add original bbox
reconstructed_bboxes.append(reconstructed_bbox) # Add merged bbox
break
else:
reconstructed_bboxes.append(bbox)
# Group reconstructed bboxes by approximate vertical proximity
for box in reconstructed_bboxes:
grouped_bboxes[round(box.top / vertical_threshold)].append(box)
# Merge within each group
for _, group in grouped_bboxes.items():
group.sort(key=lambda box: box.left)
merged_box = group[0]
for next_box in group[1:]:
if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold:
new_text = merged_box.text + " " + next_box.text
new_entity_type = merged_box.entity_type + " - " + next_box.entity_type
new_left = min(merged_box.left, next_box.left)
new_top = min(merged_box.top, next_box.top)
new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left
new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top
merged_box = CustomImageRecognizerResult(
new_entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height, new_text
)
else:
merged_bboxes.append(merged_box)
merged_box = next_box
merged_bboxes.append(merged_box)
all_bboxes.extend(original_bboxes)
#all_bboxes.extend(reconstructed_bboxes)
all_bboxes.extend(merged_bboxes)
# Return the unique original and merged bounding boxes
unique_bboxes = list({(bbox.left, bbox.top, bbox.width, bbox.height): bbox for bbox in all_bboxes}.values())
return unique_bboxes
def redact_image_pdf(file_path:str,
prepared_pdf_file_paths:List[str],
language:str,
chosen_redact_entities:List[str],
chosen_redact_comprehend_entities:List[str],
allow_list:List[str]=None,
is_a_pdf:bool=True,
page_min:int=0,
page_max:int=999,
analysis_type:str=tesseract_ocr_option,
handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"],
request_metadata:str="", current_loop_page:int=0,
page_break_return:bool=False,
images=[],
annotations_all_pages:List=[],
all_line_level_ocr_results_df = pd.DataFrame(),
all_decision_process_table = pd.DataFrame(),
pymupdf_doc = [],
pii_identification_method:str="Local",
comprehend_query_number:int=0,
comprehend_client:str="",
textract_client:str="",
custom_recogniser_word_list:List[str]=[],
redact_whole_page_list:List[str]=[],
page_break_val:int=int(page_break_value),
log_files_output_paths:List=[],
max_time:int=int(max_time_value),
progress=Progress(track_tqdm=True)):
'''
This function redacts sensitive information from a PDF document. It takes the following parameters:
- file_path (str): The path to the PDF file to be redacted.
- prepared_pdf_file_paths (List[str]): A list of paths to the PDF file pages converted to images.
- language (str): The language of the text in the PDF.
- chosen_redact_entities (List[str]): A list of entity types to redact from the PDF.
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from the list allowed by the AWS Comprehend service.
- allow_list (List[str], optional): A list of entity types to allow in the PDF. Defaults to None.
- is_a_pdf (bool, optional): Indicates if the input file is a PDF. Defaults to True.
- page_min (int, optional): The minimum page number to start redaction from. Defaults to 0.
- page_max (int, optional): The maximum page number to end redaction at. Defaults to 999.
- analysis_type (str, optional): The type of analysis to perform on the PDF. Defaults to tesseract_ocr_option.
- handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Redact all identified handwriting", "Redact all identified signatures"].
- request_metadata (str, optional): Metadata related to the redaction request. Defaults to an empty string.
- page_break_return (bool, optional): Indicates if the function should return after a page break. Defaults to False.
- images (list, optional): List of image objects for each PDF page.
- annotations_all_pages (List, optional): List of annotations on all pages that is used by the gradio_image_annotation object.
- all_line_level_ocr_results_df (pd.DataFrame(), optional): All line level OCR results for the document as a Pandas dataframe,
- all_decision_process_table (pd.DataFrame(), optional): All redaction decisions for document as a Pandas dataframe.
- pymupdf_doc (List, optional): The document as a PyMupdf object.
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
- comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package.
- textract_client (optional): A connection to the AWS Textract service via the boto3 package.
- custom_recogniser_word_list (optional): A list of custom words that the user has chosen specifically to redact.
- redact_whole_page_list (optional, List[str]): A list of pages to fully redact.
- page_break_val (int, optional): The value at which to trigger a page break. Defaults to 3.
- log_files_output_paths (List, optional): List of file paths used for saving redaction process logging results.
- max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs.
- progress (Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True.
The function returns a fully or partially-redacted PDF document.
'''
file_name = get_file_path_end(file_path)
fill = (0, 0, 0) # Fill colour for redactions
comprehend_query_number_new = 0
# Update custom word list analyser object with any new words that have been added to the custom deny list
#print("custom_recogniser_word_list:", custom_recogniser_word_list)
if custom_recogniser_word_list:
nlp_analyser.registry.remove_recognizer("CUSTOM")
new_custom_recogniser = custom_word_list_recogniser(custom_recogniser_word_list)
#print("new_custom_recogniser:", new_custom_recogniser)
nlp_analyser.registry.add_recognizer(new_custom_recogniser)
# List all elements currently in the nlp_analyser registry
#print("Current recognizers in nlp_analyser registry:")
for recognizer_name in nlp_analyser.registry.recognizers:
print(recognizer_name)
image_analyser = CustomImageAnalyzerEngine(nlp_analyser)
if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
print("Connection to AWS Comprehend service unsuccessful.")
return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number
if analysis_type == textract_option and textract_client == "":
print("Connection to AWS Textract service unsuccessful.")
return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number
tic = time.perf_counter()
if not prepared_pdf_file_paths:
out_message = "PDF does not exist as images. Converting pages to image"
print(out_message)
prepared_pdf_file_paths = process_file(file_path)
number_of_pages = len(prepared_pdf_file_paths)
print("Number of pages:", str(number_of_pages))
# Check that page_min and page_max are within expected ranges
if page_max > number_of_pages or page_max == 0:
page_max = number_of_pages
if page_min <= 0: page_min = 0
else: page_min = page_min - 1
print("Page range:", str(page_min + 1), "to", str(page_max))
#print("Current_loop_page:", current_loop_page)
if analysis_type == tesseract_ocr_option: ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + ".csv"
elif analysis_type == textract_option: ocr_results_file_path = output_folder + "ocr_results_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + "_textract.csv"
# If running Textract, check if file already exists. If it does, load in existing data
# Import results from json and convert
if analysis_type == textract_option:
json_file_path = output_folder + file_name + "_textract.json"
log_files_output_paths.append(json_file_path)
if not os.path.exists(json_file_path):
no_textract_file = True
print("No existing Textract results file found.")
existing_data = {}
#text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox) # Analyse page with Textract
#log_files_output_paths.append(json_file_path)
#request_metadata = request_metadata + "\n" + new_request_metadata
#wrapped_text_blocks = {"pages":[text_blocks]}
else:
# Open the file and load the JSON data
no_textract_file = False
print("Found existing Textract json results file.")
with open(json_file_path, 'r') as json_file:
existing_data = json.load(json_file)
###
if current_loop_page == 0: page_loop_start = 0
else: page_loop_start = current_loop_page
progress_bar = tqdm(range(page_loop_start, number_of_pages), unit="pages remaining", desc="Redacting pages")
for page_no in progress_bar:
handwriting_or_signature_boxes = []
signature_recogniser_results = []
handwriting_recogniser_results = []
page_break_return = False
reported_page_number = str(page_no + 1)
#print("Redacting page:", reported_page_number)
# Assuming prepared_pdf_file_paths[page_no] is a PIL image object
try:
image = prepared_pdf_file_paths[page_no]#.copy()
#print("image:", image)
except Exception as e:
print("Could not redact page:", reported_page_number, "due to:", e)
continue
image_annotations = {"image": image, "boxes": []}
pymupdf_page = pymupdf_doc.load_page(page_no)
if page_no >= page_min and page_no < page_max:
#print("Image is in range of pages to redact")
if isinstance(image, str):
#print("image is a file path")
image = Image.open(image)
# Need image size to convert textract OCR outputs to the correct sizes
page_width, page_height = image.size
# Possibility to use different languages
if language == 'en': ocr_lang = 'eng'
else: ocr_lang = language
# Step 1: Perform OCR. Either with Tesseract, or with AWS Textract
if analysis_type == tesseract_ocr_option:
word_level_ocr_results = image_analyser.perform_ocr(image)
# Combine OCR results
line_level_ocr_results, line_level_ocr_results_with_children = combine_ocr_results(word_level_ocr_results)
# Import results from json and convert
if analysis_type == textract_option:
# Convert the image to bytes using an in-memory buffer
image_buffer = io.BytesIO()
image.save(image_buffer, format='PNG') # Save as PNG, or adjust format if needed
pdf_page_as_bytes = image_buffer.getvalue()
if not existing_data:
text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox) # Analyse page with Textract
log_files_output_paths.append(json_file_path)
request_metadata = request_metadata + "\n" + new_request_metadata
existing_data = {"pages":[text_blocks]}
else:
# Check if the current reported_page_number exists in the loaded JSON
page_exists = any(page['page_no'] == reported_page_number for page in existing_data.get("pages", []))
if not page_exists: # If the page does not exist, analyze again
print(f"Page number {reported_page_number} not found in existing Textract data. Analysing.")
text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox) # Analyse page with Textract
# Check if "pages" key exists, if not, initialize it as an empty list
if "pages" not in existing_data:
existing_data["pages"] = []
# Append the new page data
existing_data["pages"].append(text_blocks)
request_metadata = request_metadata + "\n" + new_request_metadata
else:
# If the page exists, retrieve the data
text_blocks = next(page['data'] for page in existing_data["pages"] if page['page_no'] == reported_page_number)
# if not os.path.exists(json_file_path):
# text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox) # Analyse page with Textract
# log_files_output_paths.append(json_file_path)
# request_metadata = request_metadata + "\n" + new_request_metadata
# existing_data = {"pages":[text_blocks]}
# else:
# # Open the file and load the JSON data
# print("Found existing Textract json results file.")
# with open(json_file_path, 'r') as json_file:
# existing_data = json.load(json_file)
# # Check if the current reported_page_number exists in the loaded JSON
# page_exists = any(page['page_no'] == reported_page_number for page in existing_data.get("pages", []))
# if not page_exists: # If the page does not exist, analyze again
# print(f"Page number {reported_page_number} not found in existing data. Analyzing again.")
# text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox) # Analyse page with Textract
# # Check if "pages" key exists, if not, initialize it as an empty list
# if "pages" not in existing_data:
# existing_data["pages"] = []
# # Append the new page data
# existing_data["pages"].append(text_blocks)
# # Write the updated existing_data back to the JSON file
# with open(json_file_path, 'w') as json_file:
# json.dump(existing_data, json_file, indent=4) # indent=4 makes the JSON file pretty-printed
# log_files_output_paths.append(json_file_path)
# request_metadata = request_metadata + "\n" + new_request_metadata
# else:
# # If the page exists, retrieve the data
# text_blocks = next(page['data'] for page in existing_data["pages"] if page['page_no'] == reported_page_number)
line_level_ocr_results, handwriting_or_signature_boxes, signature_recogniser_results, handwriting_recogniser_results, line_level_ocr_results_with_children = json_to_ocrresult(text_blocks, page_width, page_height, reported_page_number)
# Step 2: Analyze text and identify PII
if chosen_redact_entities:
redaction_bboxes, comprehend_query_number_new = image_analyser.analyze_text(
line_level_ocr_results,
line_level_ocr_results_with_children,
chosen_redact_comprehend_entities = chosen_redact_comprehend_entities,
pii_identification_method = pii_identification_method,
comprehend_client=comprehend_client,
language=language,
entities=chosen_redact_entities,
allow_list=allow_list,
score_threshold=score_threshold
)
comprehend_query_number = comprehend_query_number + comprehend_query_number_new
else:
redaction_bboxes = []
if analysis_type == tesseract_ocr_option: interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + ".txt"
elif analysis_type == textract_option: interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + "_textract.txt"
# Save decision making process
bboxes_str = str(redaction_bboxes)
with open(interim_results_file_path, "w") as f:
f.write(bboxes_str)
# Merge close bounding boxes
merged_redaction_bboxes = merge_img_bboxes(redaction_bboxes, line_level_ocr_results_with_children, signature_recogniser_results, handwriting_recogniser_results, handwrite_signature_checkbox)
# 3. Draw the merged boxes
if is_pdf(file_path) == False:
draw = ImageDraw.Draw(image)
all_image_annotations_boxes = []
for box in merged_redaction_bboxes:
print("box:", box)
x0 = box.left
y0 = box.top
x1 = x0 + box.width
y1 = y0 + box.height
try:
label = box.entity_type
except:
label = "Redaction"
# Directly append the dictionary with the required keys
all_image_annotations_boxes.append({
"xmin": x0,
"ymin": y0,
"xmax": x1,
"ymax": y1,
"label": label,
"color": (0, 0, 0)
})
draw.rectangle([x0, y0, x1, y1], fill=fill) # Adjusted to use a list for rectangle
image_annotations = {"image": file_path, "boxes": all_image_annotations_boxes}
## Apply annotations with pymupdf
else:
#print("redact_whole_page_list:", redact_whole_page_list)
if redact_whole_page_list:
if current_loop_page in redact_whole_page_list: redact_whole_page = True
else: redact_whole_page = False
else: redact_whole_page = False
pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, merged_redaction_bboxes, image, redact_whole_page=redact_whole_page)
# Convert decision process to table
decision_process_table = pd.DataFrame([{
'text': result.text,
'xmin': result.left,
'ymin': result.top,
'xmax': result.left + result.width,
'ymax': result.top + result.height,
'label': result.entity_type,
'start': result.start,
'end': result.end,
'score': result.score,
'page': reported_page_number
} for result in merged_redaction_bboxes]) #'left': result.left,
#'top': result.top,
#'width': result.width,
#'height': result.height,
all_decision_process_table = pd.concat([all_decision_process_table, decision_process_table])
# Convert to DataFrame and add to ongoing logging table
line_level_ocr_results_df = pd.DataFrame([{
'page': reported_page_number,
'text': result.text,
'left': result.left,
'top': result.top,
'width': result.width,
'height': result.height
} for result in line_level_ocr_results])
all_line_level_ocr_results_df = pd.concat([all_line_level_ocr_results_df, line_level_ocr_results_df])
toc = time.perf_counter()
time_taken = toc - tic
#print("toc - tic:", time_taken)
# Break if time taken is greater than max_time seconds
if time_taken > max_time:
print("Processing for", max_time, "seconds, breaking loop.")
page_break_return = True
progress.close(_tqdm=progress_bar)
tqdm._instances.clear()
if is_pdf(file_path) == False:
images.append(image)
pymupdf_doc = images
# Check if the image already exists in annotations_all_pages
#print("annotations_all_pages:", annotations_all_pages)
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None)
if existing_index is not None:
# Replace the existing annotation
annotations_all_pages[existing_index] = image_annotations
else:
# Append new annotation if it doesn't exist
annotations_all_pages.append(image_annotations)
if analysis_type == textract_option:
# Write the updated existing textract data back to the JSON file
with open(json_file_path, 'w') as json_file:
json.dump(existing_data, json_file, indent=4) # indent=4 makes the JSON file pretty-printed
current_loop_page += 1
return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number
if is_pdf(file_path) == False:
images.append(image)
pymupdf_doc = images
# Check if the image already exists in annotations_all_pages
#print("annotations_all_pages:", annotations_all_pages)
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None)
if existing_index is not None:
# Replace the existing annotation
annotations_all_pages[existing_index] = image_annotations
else:
# Append new annotation if it doesn't exist
annotations_all_pages.append(image_annotations)
current_loop_page += 1
# Break if new page is a multiple of chosen page_break_val
if current_loop_page % page_break_val == 0:
page_break_return = True
progress.close(_tqdm=progress_bar)
tqdm._instances.clear()
if analysis_type == textract_option:
# Write the updated existing textract data back to the JSON file
with open(json_file_path, 'w') as json_file:
json.dump(existing_data, json_file, indent=4) # indent=4 makes the JSON file pretty-printed
return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number
if analysis_type == textract_option:
# Write the updated existing textract data back to the JSON file
with open(json_file_path, 'w') as json_file:
json.dump(existing_data, json_file, indent=4) # indent=4 makes the JSON file pretty-printed
return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number
###
# PIKEPDF TEXT PDF REDACTION
###
def get_text_container_characters(text_container:LTTextContainer):
if isinstance(text_container, LTTextContainer):
characters = [char
for line in text_container
if isinstance(line, LTTextLine) or isinstance(line, LTTextLineHorizontal)
for char in line]
return characters
return []
def create_text_bounding_boxes_from_characters(char_objects:List[LTChar]) -> Tuple[List[OCRResult], List[LTChar]]:
'''
Create an OCRResult object based on a list of pdfminer LTChar objects.
'''
line_level_results_out = []
line_level_characters_out = []
#all_line_level_characters_out = []
character_objects_out = [] # New list to store character objects
# Initialize variables
full_text = ""
added_text = ""
overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # [x0, y0, x1, y1]
word_bboxes = []
# Iterate through the character objects
current_word = ""
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # [x0, y0, x1, y1]
for char in char_objects:
character_objects_out.append(char) # Collect character objects
if isinstance(char, LTAnno):
# Handle space separately by finalizing the word
full_text += char.get_text() # Adds space or newline
if current_word: # Only finalize if there is a current word
word_bboxes.append((current_word, current_word_bbox))
current_word = ""
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # Reset for next word
# Check for line break (assuming a new line is indicated by a specific character)
if '\n' in char.get_text():
#print("char_anno:", char)
# Finalize the current line
if current_word:
word_bboxes.append((current_word, current_word_bbox))
# Create an OCRResult for the current line
line_level_results_out.append(OCRResult(full_text, round(overall_bbox[0], 2), round(overall_bbox[1], 2), round(overall_bbox[2] - overall_bbox[0], 2), round(overall_bbox[3] - overall_bbox[1], 2)))
line_level_characters_out.append(character_objects_out)
# Reset for the next line
character_objects_out = []
full_text = ""
overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
current_word = ""
current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')]
continue
# Concatenate text for LTChar
#full_text += char.get_text()
#added_text = re.sub(r'[^\x00-\x7F]+', ' ', char.get_text())
added_text = char.get_text()
if re.search(r'[^\x00-\x7F]', added_text): # Matches any non-ASCII character
#added_text.encode('latin1', errors='replace').decode('utf-8')
added_text = clean_unicode_text(added_text)
full_text += added_text # Adds space or newline, removing
# Update overall bounding box
x0, y0, x1, y1 = char.bbox
overall_bbox[0] = min(overall_bbox[0], x0) # x0
overall_bbox[1] = min(overall_bbox[1], y0) # y0
overall_bbox[2] = max(overall_bbox[2], x1) # x1
overall_bbox[3] = max(overall_bbox[3], y1) # y1
# Update current word
#current_word += char.get_text()
current_word += added_text
# Update current word bounding box
current_word_bbox[0] = min(current_word_bbox[0], x0) # x0
current_word_bbox[1] = min(current_word_bbox[1], y0) # y0
current_word_bbox[2] = max(current_word_bbox[2], x1) # x1
current_word_bbox[3] = max(current_word_bbox[3], y1) # y1
# Finalize the last word if any
if current_word:
word_bboxes.append((current_word, current_word_bbox))
if full_text:
#print("full_text before:", full_text)
if re.search(r'[^\x00-\x7F]', full_text): # Matches any non-ASCII character
# Convert special characters to a human-readable format
#full_text = full_text.encode('latin1', errors='replace').decode('utf-8')
full_text = clean_unicode_text(full_text)
#print("full_text:", full_text)
line_level_results_out.append(OCRResult(full_text, round(overall_bbox[0],2), round(overall_bbox[1], 2), round(overall_bbox[2]-overall_bbox[0],2), round(overall_bbox[3]-overall_bbox[1],2)))
#line_level_characters_out = character_objects_out
return line_level_results_out, line_level_characters_out # Return both results and character objects
def merge_text_bounding_boxes(analyser_results, characters: List[LTChar], combine_pixel_dist: int = 20, vertical_padding: int = 0):
'''
Merge identified bounding boxes containing PII that are very close to one another
'''
analysed_bounding_boxes = []
original_bounding_boxes = [] # List to hold original bounding boxes
if len(analyser_results) > 0 and len(characters) > 0:
# Extract bounding box coordinates for sorting
bounding_boxes = []
for result in analyser_results:
#print("Result:", result)
char_boxes = [char.bbox for char in characters[result.start:result.end] if isinstance(char, LTChar)]
char_text = [char._text for char in characters[result.start:result.end] if isinstance(char, LTChar)]
if char_boxes:
# Calculate the bounding box that encompasses all characters
left = min(box[0] for box in char_boxes)
bottom = min(box[1] for box in char_boxes)
right = max(box[2] for box in char_boxes)
top = max(box[3] for box in char_boxes) + vertical_padding
bbox = [left, bottom, right, top]
bounding_boxes.append((bottom, left, result, bbox, char_text)) # (y, x, result, bbox, text)
# Store original bounding boxes
original_bounding_boxes.append({"text": "".join(char_text), "boundingBox": bbox, "result": copy.deepcopy(result)})
#print("Original bounding boxes:", original_bounding_boxes)
# Sort the results by y-coordinate and then by x-coordinate
bounding_boxes.sort()
merged_bounding_boxes = []
current_box = None
current_y = None
current_result = None
current_text = []
for y, x, result, next_box, text in bounding_boxes:
if current_y is None or current_box is None:
# Initialize the first bounding box
current_box = next_box
current_y = next_box[1]
current_result = result
current_text = list(text)
else:
vertical_diff_bboxes = abs(next_box[1] - current_y)
horizontal_diff_bboxes = abs(next_box[0] - current_box[2])
if vertical_diff_bboxes <= 5 and horizontal_diff_bboxes <= combine_pixel_dist:
# Merge bounding boxes
#print("Merging boxes")
merged_box = current_box.copy()
merged_result = current_result
merged_text = current_text.copy()
#print("current_box_max_x:", current_box[2])
#print("char_max_x:", next_box[2])
merged_box[2] = next_box[2] # Extend horizontally
merged_box[3] = max(current_box[3], next_box[3]) # Adjust the top
merged_result.end = max(current_result.end, result.end) # Extend text range
try:
merged_result.entity_type = current_result.entity_type + " - " + result.entity_type
except Exception as e:
print("Unable to combine result entity types:", e)
if current_text:
merged_text.append(" ") # Add space between texts
merged_text.extend(text)
merged_bounding_boxes.append({
"text": "".join(merged_text),
"boundingBox": merged_box,
"result": merged_result
})
else:
# Save the current merged box before starting a new one
# merged_bounding_boxes.append({
# "text": "".join(current_text),
# "boundingBox": current_box,
# "result": current_result
# })
# Start a new bounding box
current_box = next_box
current_y = next_box[1]
current_result = result
current_text = list(text)
# Handle the last box
# if current_box is not None:
# merged_bounding_boxes.append({
# "text": "".join(current_text),
# "boundingBox": current_box,
# "result": current_result
# })
# Combine original and merged bounding boxes
analysed_bounding_boxes.extend(original_bounding_boxes)
analysed_bounding_boxes.extend(merged_bounding_boxes)
#print("Analysed bounding boxes:", analysed_bounding_boxes)
return analysed_bounding_boxes
def create_text_redaction_process_results(analyser_results, analysed_bounding_boxes, page_num):
decision_process_table = pd.DataFrame()
if len(analyser_results) > 0:
# Create summary df of annotations to be made
analysed_bounding_boxes_df_new = pd.DataFrame(analysed_bounding_boxes)
# Remove brackets and split the string into four separate columns
#print("analysed_bounding_boxes_df_new:", analysed_bounding_boxes_df_new['boundingBox'])
# analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']] = analysed_bounding_boxes_df_new['boundingBox'].str.strip('[]').str.split(',', expand=True)
# Split the boundingBox list into four separate columns
analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']] = analysed_bounding_boxes_df_new['boundingBox'].apply(pd.Series)
# Convert the new columns to integers (if needed)
analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']] = analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']].astype(float)
analysed_bounding_boxes_df_text = analysed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True)
analysed_bounding_boxes_df_text.columns = ["label", "start", "end", "score"]
analysed_bounding_boxes_df_new = pd.concat([analysed_bounding_boxes_df_new, analysed_bounding_boxes_df_text], axis = 1)
analysed_bounding_boxes_df_new['page'] = page_num + 1
decision_process_table = pd.concat([decision_process_table, analysed_bounding_boxes_df_new], axis = 0).drop('result', axis=1)
#print('\n\ndecision_process_table:\n\n', decision_process_table)
return decision_process_table
def create_pikepdf_annotations_for_bounding_boxes(analysed_bounding_boxes):
pikepdf_annotations_on_page = []
for analysed_bounding_box in analysed_bounding_boxes:
bounding_box = analysed_bounding_box["boundingBox"]
annotation = Dictionary(
Type=Name.Annot,
Subtype=Name.Square, #Name.Highlight,
QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3],
bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]],
Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]],
C=[0, 0, 0],
IC=[0, 0, 0],
CA=1, # Transparency
T=analysed_bounding_box["result"].entity_type,
BS=Dictionary(
W=0, # Border width: 1 point
S=Name.S # Border style: solid
)
)
pikepdf_annotations_on_page.append(annotation)
return pikepdf_annotations_on_page
def redact_text_pdf(
filename: str, # Path to the PDF file to be redacted
prepared_pdf_image_path: str, # Path to the prepared PDF image for redaction
language: str, # Language of the PDF content
chosen_redact_entities: List[str], # List of entities to be redacted
chosen_redact_comprehend_entities: List[str],
allow_list: List[str] = None, # Optional list of allowed entities
page_min: int = 0, # Minimum page number to start redaction
page_max: int = 999, # Maximum page number to end redaction
analysis_type: str = text_ocr_option, # Type of analysis to perform
current_loop_page: int = 0, # Current page being processed in the loop
page_break_return: bool = False, # Flag to indicate if a page break should be returned
annotations_all_pages: List = [], # List of annotations across all pages
all_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame(), # DataFrame for OCR results
all_decision_process_table: pd.DataFrame = pd.DataFrame(), # DataFrame for decision process table
pymupdf_doc: List = [], # List of PyMuPDF documents
pii_identification_method: str = "Local",
comprehend_query_number:int = 0,
comprehend_client="",
custom_recogniser_word_list:List[str]=[],
redact_whole_page_list:List[str]=[],
page_break_val: int = int(page_break_value), # Value for page break
max_time: int = int(max_time_value),
progress: Progress = Progress(track_tqdm=True) # Progress tracking object
):
'''
Redact chosen entities from a PDF that is made up of multiple pages that are not images.
Input Variables:
- filename: Path to the PDF file to be redacted
- prepared_pdf_image_path: Path to the prepared PDF image for redaction
- language: Language of the PDF content
- chosen_redact_entities: List of entities to be redacted
- chosen_redact_comprehend_entities: List of entities to be redacted for AWS Comprehend
- allow_list: Optional list of allowed entities
- page_min: Minimum page number to start redaction
- page_max: Maximum page number to end redaction
- analysis_type: Type of analysis to perform
- current_loop_page: Current page being processed in the loop
- page_break_return: Flag to indicate if a page break should be returned
- annotations_all_pages: List of annotations across all pages
- all_line_level_ocr_results_df: DataFrame for OCR results
- all_decision_process_table: DataFrame for decision process table
- pymupdf_doc: List of PyMuPDF documents
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
- comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package.
- custom_recogniser_word_list (optional, List[str]): A list of custom words that the user has chosen specifically to redact.
- redact_whole_page_list (optional, List[str]): A list of pages to fully redact.
- page_break_val: Value for page break
- max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs.
- progress: Progress tracking object
'''
if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
print("Connection to AWS Comprehend service not found.")
return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number
# Update custom word list analyser object with any new words that have been added to the custom deny list
#print("custom_recogniser_word_list:", custom_recogniser_word_list)
if custom_recogniser_word_list:
nlp_analyser.registry.remove_recognizer("CUSTOM")
new_custom_recogniser = custom_word_list_recogniser(custom_recogniser_word_list)
#print("new_custom_recogniser:", new_custom_recogniser)
nlp_analyser.registry.add_recognizer(new_custom_recogniser)
# List all elements currently in the nlp_analyser registry
#print("Current recognizers in nlp_analyser registry:")
#for recognizer_name in nlp_analyser.registry.recognizers:
# print(recognizer_name)
#print("Custom recogniser:", nlp_analyser.registry.)
tic = time.perf_counter()
# Open with Pikepdf to get text lines
pikepdf_pdf = Pdf.open(filename)
number_of_pages = len(pikepdf_pdf.pages)
# Check that page_min and page_max are within expected ranges
if page_max > number_of_pages or page_max == 0:
page_max = number_of_pages
if page_min <= 0: page_min = 0
else: page_min = page_min - 1
print("Page range is",str(page_min + 1), "to", str(page_max))
print("Current_loop_page:", current_loop_page)
if current_loop_page == 0: page_loop_start = 0
else: page_loop_start = current_loop_page
progress_bar = tqdm(range(current_loop_page, number_of_pages), unit="pages remaining", desc="Redacting pages")
#for page_no in range(0, number_of_pages):
for page_no in progress_bar:
reported_page_number = str(page_no + 1)
print("Redacting page:", reported_page_number)
# Assuming prepared_pdf_file_paths[page_no] is a PIL image object
try:
image = prepared_pdf_image_path[page_no]#.copy()
#print("image:", image)
except Exception as e:
print("Could not redact page:", reported_page_number, "due to:")
print(e)
continue
image_annotations = {"image": image, "boxes": []}
pymupdf_page = pymupdf_doc.load_page(page_no)
if page_min <= page_no < page_max:
if isinstance(image, str):
image_path = image
image = Image.open(image_path)
for page_layout in extract_pages(filename, page_numbers = [page_no], maxpages=1):
page_analyser_results = []
page_analysed_bounding_boxes = []
characters = []
pikepdf_annotations_on_page = []
decision_process_table_on_page = pd.DataFrame()
page_text_outputs = pd.DataFrame()
if analysis_type == text_ocr_option:
for n, text_container in enumerate(page_layout):
text_container_analyser_results = []
text_container_analysed_bounding_boxes = []
characters = []
if isinstance(text_container, LTTextContainer) or isinstance(text_container, LTAnno):
characters = get_text_container_characters(text_container)
# Create dataframe for all the text on the page
line_level_text_results_list, line_characters = create_text_bounding_boxes_from_characters(characters)
# Create page_text_outputs (OCR format outputs)
if line_level_text_results_list:
# Convert to DataFrame and add to ongoing logging table
line_level_text_results_df = pd.DataFrame([{
'page': page_no + 1,
'text': result.text,
'left': result.left,
'top': result.top,
'width': result.width,
'height': result.height
} for result in line_level_text_results_list])
page_text_outputs = pd.concat([page_text_outputs, line_level_text_results_df])
# Initialize batching variables
current_batch = ""
current_batch_mapping = [] # List of (start_pos, line_index, OCRResult) tuples
all_text_line_results = [] # Store results for all lines
# First pass: collect all lines into batches
for i, text_line in enumerate(line_level_text_results_list):
if chosen_redact_entities:
if pii_identification_method == "Local":
#print("chosen_redact_entities:", chosen_redact_entities)
# Process immediately for local analysis
text_line_analyser_result = nlp_analyser.analyze(
text=text_line.text,
language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list
)
all_text_line_results.append((i, text_line_analyser_result))
elif pii_identification_method == "AWS Comprehend":
# First use the local Spacy model to pick up custom entities that AWS Comprehend can't search for.
custom_redact_entities = [entity for entity in chosen_redact_comprehend_entities if entity in custom_entities]
text_line_analyser_result = nlp_analyser.analyze(
text=text_line.text,
language=language,
entities=custom_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list
)
all_text_line_results.append((i, text_line_analyser_result))
if len(text_line.text) >= 3:
# Add separator between lines
if current_batch:
current_batch += " | "
start_pos = len(current_batch)
current_batch += text_line.text
current_batch_mapping.append((start_pos, i, text_line))
# Process batch if approaching 300 characters or last line
if len(current_batch) >= 200 or i == len(line_level_text_results_list) - 1:
print("length of text for Comprehend:", len(current_batch))
try:
response = comprehend_client.detect_pii_entities(
Text=current_batch,
LanguageCode=language
)
except Exception as e:
print(e)
time.sleep(3)
response = comprehend_client.detect_pii_entities(
Text=current_batch,
LanguageCode=language
)
comprehend_query_number += 1
# Process response and map back to original lines
if response and "Entities" in response:
for entity in response["Entities"]:
entity_start = entity["BeginOffset"]
entity_end = entity["EndOffset"]
# Find which line this entity belongs to
for batch_start, line_idx, original_line in current_batch_mapping:
batch_end = batch_start + len(original_line.text)
# Check if entity belongs to this line
if batch_start <= entity_start < batch_end:
# Adjust offsets relative to original line
relative_start = entity_start - batch_start
relative_end = min(entity_end - batch_start, len(original_line.text))
result_text = original_line.text[relative_start:relative_end]
if result_text not in allow_list:
if entity.get("Type") in chosen_redact_comprehend_entities:
# Create adjusted entity
adjusted_entity = entity.copy()
adjusted_entity["BeginOffset"] = relative_start
adjusted_entity["EndOffset"] = relative_end
recogniser_entity = recognizer_result_from_dict(adjusted_entity)
# Add to results for this line
existing_results = next((results for idx, results in all_text_line_results if idx == line_idx), [])
if not existing_results:
all_text_line_results.append((line_idx, [recogniser_entity]))
else:
existing_results.append(recogniser_entity)
# Reset batch
current_batch = ""
current_batch_mapping = []
# Second pass: process results for each line
for i, text_line in enumerate(line_level_text_results_list):
text_line_analyser_result = []
text_line_bounding_boxes = []
# Get results for this line
line_results = next((results for idx, results in all_text_line_results if idx == i), [])
if line_results:
text_line_analyser_result = line_results
#print("Analysed text container, now merging bounding boxes")
# Merge bounding boxes if very close together
text_line_bounding_boxes = merge_text_bounding_boxes(text_line_analyser_result, line_characters[i])
#print("merged bounding boxes")
text_container_analyser_results.extend(text_line_analyser_result)
text_container_analysed_bounding_boxes.extend(text_line_bounding_boxes)
#print("text_container_analyser_results:", text_container_analyser_results)
page_analyser_results.extend(text_container_analyser_results) # Add this line
page_analysed_bounding_boxes.extend(text_line_bounding_boxes) # Add this line
#print("page_analyser_results:", page_analyser_results)
#print("page_analysed_bounding_boxes:", page_analysed_bounding_boxes)
#print("image:", image)
page_analysed_bounding_boxes = convert_pikepdf_decision_output_to_image_coords(pymupdf_page, page_analysed_bounding_boxes, image)
#print("page_analysed_bounding_boxes_out_converted:", page_analysed_bounding_boxes)
# Annotate redactions on page
pikepdf_annotations_on_page = create_pikepdf_annotations_for_bounding_boxes(page_analysed_bounding_boxes)
#print("pikepdf_annotations_on_page:", pikepdf_annotations_on_page)
# Make pymupdf page redactions
#print("redact_whole_page_list:", redact_whole_page_list)
if redact_whole_page_list:
if current_loop_page in redact_whole_page_list: redact_whole_page = True
else: redact_whole_page = False
else: redact_whole_page = False
pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, pikepdf_annotations_on_page, image, redact_whole_page=redact_whole_page, convert_coords=False)
#print("image_annotations:", image_annotations)
#print("Did redact_page_with_pymupdf function")
reported_page_no = page_no + 1
print("For page number:", reported_page_no, "there are", len(image_annotations["boxes"]), "annotations")
# Write logs
# Create decision process table
decision_process_table_on_page = create_text_redaction_process_results(page_analyser_results, page_analysed_bounding_boxes, current_loop_page)
if not decision_process_table_on_page.empty:
all_decision_process_table = pd.concat([all_decision_process_table, decision_process_table_on_page])
#print("all_decision_process_table:", all_decision_process_table)
if not page_text_outputs.empty:
page_text_outputs = page_text_outputs.sort_values(["top", "left"], ascending=[False, False]).reset_index(drop=True)
all_line_level_ocr_results_df = pd.concat([all_line_level_ocr_results_df, page_text_outputs])
toc = time.perf_counter()
time_taken = toc - tic
#print("toc - tic:", time_taken)
# Break if time taken is greater than max_time seconds
if time_taken > max_time:
print("Processing for", max_time, "seconds, breaking.")
page_break_return = True
progress.close(_tqdm=progress_bar)
tqdm._instances.clear()
# Check if the image already exists in annotations_all_pages
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None)
if existing_index is not None:
# Replace the existing annotation
annotations_all_pages[existing_index] = image_annotations
else:
# Append new annotation if it doesn't exist
annotations_all_pages.append(image_annotations)
current_loop_page += 1
return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number
# Check if the image already exists in annotations_all_pages
existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None)
if existing_index is not None:
# Replace the existing annotation
annotations_all_pages[existing_index] = image_annotations
else:
# Append new annotation if it doesn't exist
annotations_all_pages.append(image_annotations)
current_loop_page += 1
# Break if new page is a multiple of 10
if current_loop_page % page_break_val == 0:
page_break_return = True
progress.close(_tqdm=progress_bar)
return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number
return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number