Spaces:
Sleeping
Sleeping
Changed embedding model to MiniLM-L6 as faster. Compressed embeddings are now int8. General improvements to API mode
ea0dd40
# ## Some functions to clean text | |
import re | |
import string | |
# Add calendar months onto stop words | |
import calendar | |
from typing import List | |
# Adding custom words to the stopwords | |
custom_words = [] | |
my_stop_words = custom_words | |
cal_month = (list(calendar.month_name)) | |
cal_month = [x.lower() for x in cal_month] | |
# Remove blanks | |
cal_month = [i for i in cal_month if i] | |
#print(cal_month) | |
custom_words.extend(cal_month) | |
# #### Some of my cleaning functions | |
replace_backslash = r'\\' | |
email_start_pattern_regex = r'.*importance:|.*subject:' | |
email_end_pattern_regex = r'kind regards.*|many thanks.*|sincerely.*' | |
html_pattern_regex = r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0| ' | |
email_pattern_regex = r'\S*@\S*\s?' | |
num_pattern_regex = r'[0-9]+' | |
postcode_pattern_regex = r'(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2})|((GIR ?0A{2})\b$)|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$)|(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\b$)' | |
warning_pattern_regex = r'caution: this email originated from outside of the organization. do not click links or open attachments unless you recognize the sender and know the content is safe.' | |
nbsp_pattern_regex = r' ' | |
multiple_spaces_regex = r'\s{2,}' | |
def initial_clean(texts:List[str]): | |
""" | |
This function cleans a list of text strings by performing various replacements using polars. | |
Args: | |
texts (List[str]): A list of strings to clean. | |
Returns: | |
List[str]: A list of cleaned strings. | |
""" | |
import polars as pl | |
texts = pl.Series(texts) | |
text = texts.str.replace_all(replace_backslash, '/') | |
text = text.str.replace_all(html_pattern_regex, '') | |
text = text.str.replace_all(email_start_pattern_regex, '') | |
text = text.str.replace_all(email_end_pattern_regex, '') | |
text = text.str.replace_all(email_pattern_regex, '') | |
text = text.str.replace_all(multiple_spaces_regex, ' ') | |
text = text.to_list() | |
return text | |
def initial_clean_pandas(texts: List[str]): | |
""" | |
This function cleans a list of text strings by performing various replacements using pandas. | |
Args: | |
texts (List[str]): A list of strings to clean. | |
Returns: | |
List[str]: A list of cleaned strings. | |
""" | |
import pandas as pd | |
# Create a pandas Series from the text list for easier manipulation | |
text_series = pd.Series(texts) | |
# Replace patterns with pandas string methods (`.str.replace`) | |
text_series = text_series.astype(str).str.replace(replace_backslash, '/', regex=True) | |
text_series = text_series.astype(str).str.replace(html_pattern_regex, '', regex=True) | |
text_series = text_series.astype(str).str.replace(email_start_pattern_regex, '', regex=True) | |
text_series = text_series.astype(str).str.replace(email_end_pattern_regex, '', regex=True) | |
text_series = text_series.astype(str).str.replace(email_pattern_regex, '', regex=True) | |
text_series = text_series.astype(str).str.replace(multiple_spaces_regex, ' ', regex=True) | |
# Convert cleaned Series back to a list | |
return text_series.tolist() | |
def remove_hyphens(text_text): | |
return re.sub(r'(\w+)-(\w+)-?(\w)?', r'\1 \2 \3', text_text) | |
def remove_characters_after_tokenization(tokens): | |
pattern = re.compile('[{}]'.format(re.escape(string.punctuation))) | |
filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens]) | |
return filtered_tokens | |
def convert_to_lowercase(tokens): | |
return [token.lower() for token in tokens if token.isalpha()] | |
def remove_short_tokens(tokens): | |
return [token for token in tokens if len(token) > 3] | |
def remove_dups_text(data_samples_ready, data_samples_clean, data_samples): | |
# Identify duplicates in the data: https://stackoverflow.com/questions/44191465/efficiently-identify-duplicates-in-large-list-500-000 | |
# Only identifies the second duplicate | |
seen = set() | |
dups = [] | |
for i, doi in enumerate(data_samples_ready): | |
if doi not in seen: | |
seen.add(doi) | |
else: | |
dups.append(i) | |
#data_samples_ready[dupes[0:]] | |
# To see a specific duplicated value you know the position of | |
#matching = [s for s in data_samples_ready if data_samples_ready[83] in s] | |
#matching | |
# Remove duplicates only (keep first instance) | |
#data_samples_ready = list( dict.fromkeys(data_samples_ready) ) # This way would keep one version of the duplicates | |
### Remove all duplicates including original instance | |
# Identify ALL duplicates including initial values | |
# https://stackoverflow.com/questions/11236006/identify-duplicate-values-in-a-list-in-python | |
from collections import defaultdict | |
D = defaultdict(list) | |
for i,item in enumerate(data_samples_ready): | |
D[item].append(i) | |
D = {k:v for k,v in D.items() if len(v)>1} | |
# https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-a-list-of-lists | |
L = list(D.values()) | |
flat_list_dups = [item for sublist in L for item in sublist] | |
# https://stackoverflow.com/questions/11303225/how-to-remove-multiple-indexes-from-a-list-at-the-same-time | |
for index in sorted(flat_list_dups, reverse=True): | |
del data_samples_ready[index] | |
del data_samples_clean[index] | |
del data_samples[index] | |
# Remove blanks | |
data_samples_ready = [i for i in data_samples_ready if i] | |
data_samples_clean = [i for i in data_samples_clean if i] | |
data_samples = [i for i in data_samples if i] | |
return data_samples_ready, data_samples_clean, flat_list_dups, data_samples | |