Spaces:
Running
Running
seanpedrickcase
commited on
Commit
•
8c90944
1
Parent(s):
86f6252
Allowed for custom output folder. Upgraded Gradio version
Browse files- AddressMatcher_0.1_f.spec +52 -0
- Dockerfile +1 -1
- README.md +1 -1
- app.py +4 -1
- how_to_create_exe_dist.txt +4 -0
- tools/addressbase_api_funcs.py +0 -14
- tools/aws_functions.py +0 -10
- tools/constants.py +44 -35
- tools/gradio.py +4 -3
- tools/matcher_funcs.py +10 -58
- tools/model_predict.py +0 -15
- tools/recordlinkage_funcs.py +1 -34
AddressMatcher_0.1_f.spec
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- mode: python ; coding: utf-8 -*-
|
2 |
+
from PyInstaller.utils.hooks import collect_data_files
|
3 |
+
|
4 |
+
datas = []
|
5 |
+
datas += collect_data_files('gradio_client')
|
6 |
+
datas += collect_data_files('gradio')
|
7 |
+
|
8 |
+
|
9 |
+
a = Analysis(
|
10 |
+
['app.py'],
|
11 |
+
pathex=[],
|
12 |
+
binaries=[],
|
13 |
+
datas=datas,
|
14 |
+
hiddenimports=['pyarrow.vendored.version'],
|
15 |
+
hookspath=['build_deps\\'],
|
16 |
+
hooksconfig={},
|
17 |
+
runtime_hooks=[],
|
18 |
+
excludes=[],
|
19 |
+
noarchive=False,
|
20 |
+
optimize=0,
|
21 |
+
module_collection_mode={
|
22 |
+
'gradio': 'py', # Collect gradio package as source .py files
|
23 |
+
}
|
24 |
+
)
|
25 |
+
pyz = PYZ(a.pure)
|
26 |
+
|
27 |
+
exe = EXE(
|
28 |
+
pyz,
|
29 |
+
a.scripts,
|
30 |
+
[],
|
31 |
+
exclude_binaries=True,
|
32 |
+
name='AddressMatcher_0.1_f',
|
33 |
+
debug=False,
|
34 |
+
bootloader_ignore_signals=False,
|
35 |
+
strip=False,
|
36 |
+
upx=True,
|
37 |
+
console=True,
|
38 |
+
disable_windowed_traceback=False,
|
39 |
+
argv_emulation=False,
|
40 |
+
target_arch=None,
|
41 |
+
codesign_identity=None,
|
42 |
+
entitlements_file=None,
|
43 |
+
)
|
44 |
+
coll = COLLECT(
|
45 |
+
exe,
|
46 |
+
a.binaries,
|
47 |
+
a.datas,
|
48 |
+
strip=False,
|
49 |
+
upx=True,
|
50 |
+
upx_exclude=[],
|
51 |
+
name='AddressMatcher_0.1_f',
|
52 |
+
)
|
Dockerfile
CHANGED
@@ -6,7 +6,7 @@ COPY requirements.txt .
|
|
6 |
|
7 |
RUN pip install --no-cache-dir -r requirements.txt
|
8 |
|
9 |
-
RUN pip install --no-cache-dir gradio==4.
|
10 |
|
11 |
# Set up a new user named "user" with user ID 1000
|
12 |
RUN useradd -m -u 1000 user
|
|
|
6 |
|
7 |
RUN pip install --no-cache-dir -r requirements.txt
|
8 |
|
9 |
+
RUN pip install --no-cache-dir gradio==4.32.2
|
10 |
|
11 |
# Set up a new user named "user" with user ID 1000
|
12 |
RUN useradd -m -u 1000 user
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🌍
|
|
4 |
colorFrom: purple
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
4 |
colorFrom: purple
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.32.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -7,6 +7,7 @@ import pandas as pd
|
|
7 |
from tools.matcher_funcs import run_matcher
|
8 |
from tools.gradio import initial_data_load, ensure_output_folder_exists
|
9 |
from tools.aws_functions import load_data_from_aws
|
|
|
10 |
|
11 |
import warnings
|
12 |
# Remove warnings from print statements
|
@@ -20,7 +21,9 @@ today_rev = datetime.now().strftime("%Y%m%d")
|
|
20 |
|
21 |
# Base folder is where the code file is stored
|
22 |
base_folder = Path(os.getcwd())
|
23 |
-
output_folder = "output/"
|
|
|
|
|
24 |
|
25 |
ensure_output_folder_exists(output_folder)
|
26 |
|
|
|
7 |
from tools.matcher_funcs import run_matcher
|
8 |
from tools.gradio import initial_data_load, ensure_output_folder_exists
|
9 |
from tools.aws_functions import load_data_from_aws
|
10 |
+
from tools.constants import output_folder
|
11 |
|
12 |
import warnings
|
13 |
# Remove warnings from print statements
|
|
|
21 |
|
22 |
# Base folder is where the code file is stored
|
23 |
base_folder = Path(os.getcwd())
|
24 |
+
# output_folder = "output/" # This is now defined in constants
|
25 |
+
|
26 |
+
|
27 |
|
28 |
ensure_output_folder_exists(output_folder)
|
29 |
|
how_to_create_exe_dist.txt
CHANGED
@@ -16,6 +16,8 @@ NOTE: for ensuring that spaCy models are loaded into the program correctly in re
|
|
16 |
|
17 |
a) In command line: pyi-makespec --additional-hooks-dir="build_deps\\" --collect-data=gradio_client --collect-data=gradio --hidden-import pyarrow.vendored.version --onefile --name AddressMatcher_0.1 app.py
|
18 |
|
|
|
|
|
19 |
b) Open the created spec file in Notepad. Add the following to the end of the Analysis section then save:
|
20 |
|
21 |
a = Analysis(
|
@@ -27,6 +29,8 @@ a = Analysis(
|
|
27 |
|
28 |
c) Back in command line, run this: pyinstaller --clean --noconfirm AddressMatcher_0.1.spec
|
29 |
|
|
|
|
|
30 |
|
31 |
9. A 'dist' folder will be created with the executable inside along with all dependencies('dist\data_text_search').
|
32 |
|
|
|
16 |
|
17 |
a) In command line: pyi-makespec --additional-hooks-dir="build_deps\\" --collect-data=gradio_client --collect-data=gradio --hidden-import pyarrow.vendored.version --onefile --name AddressMatcher_0.1 app.py
|
18 |
|
19 |
+
pyi-makespec --additional-hooks-dir="build_deps\\" --collect-data=gradio_client --collect-data=gradio --hidden-import pyarrow.vendored.version --name AddressMatcher_0.1_f app.py
|
20 |
+
|
21 |
b) Open the created spec file in Notepad. Add the following to the end of the Analysis section then save:
|
22 |
|
23 |
a = Analysis(
|
|
|
29 |
|
30 |
c) Back in command line, run this: pyinstaller --clean --noconfirm AddressMatcher_0.1.spec
|
31 |
|
32 |
+
pyinstaller --clean --noconfirm AddressMatcher_0.1_f.spec
|
33 |
+
|
34 |
|
35 |
9. A 'dist' folder will be created with the executable inside along with all dependencies('dist\data_text_search').
|
36 |
|
tools/addressbase_api_funcs.py
CHANGED
@@ -156,9 +156,6 @@ def places_api_query(query, api_key, query_type):
|
|
156 |
print("No API key provided.")
|
157 |
return pd.DataFrame() # Return blank dataframe
|
158 |
|
159 |
-
#print('RESPONSE:', concat_results)
|
160 |
-
|
161 |
-
|
162 |
# Convert 'results' to DataFrame
|
163 |
|
164 |
# Check if 'LPI' sub-branch exists in the JSON response
|
@@ -177,18 +174,7 @@ def places_api_query(query, api_key, query_type):
|
|
177 |
if isinstance(df, pd.Series):
|
178 |
print("This is a series!")
|
179 |
df = df.to_frame().T # Convert the Series to a DataFrame with a single row
|
180 |
-
# if isinstance(df, pd.DataFrame):
|
181 |
-
# print("This is a dataframe!")
|
182 |
-
# else:
|
183 |
-
# print("This is not a dataframe!")
|
184 |
-
# return pd.DataFrame() # Return blank dataframe
|
185 |
-
|
186 |
|
187 |
-
print(df)
|
188 |
-
#print(df.columns)
|
189 |
-
#df.to_csv(query + ".csv")
|
190 |
-
|
191 |
-
|
192 |
|
193 |
overall_toc = time.perf_counter()
|
194 |
time_out = f"The API call took {overall_toc - overall_tic:0.1f} seconds"
|
|
|
156 |
print("No API key provided.")
|
157 |
return pd.DataFrame() # Return blank dataframe
|
158 |
|
|
|
|
|
|
|
159 |
# Convert 'results' to DataFrame
|
160 |
|
161 |
# Check if 'LPI' sub-branch exists in the JSON response
|
|
|
174 |
if isinstance(df, pd.Series):
|
175 |
print("This is a series!")
|
176 |
df = df.to_frame().T # Convert the Series to a DataFrame with a single row
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
overall_toc = time.perf_counter()
|
180 |
time_out = f"The API call took {overall_toc - overall_tic:0.1f} seconds"
|
tools/aws_functions.py
CHANGED
@@ -13,16 +13,6 @@ except Exception as e:
|
|
13 |
bucket_name = ''
|
14 |
print(e)
|
15 |
|
16 |
-
# sts = session.client("sts")
|
17 |
-
# Create a Session with the IAM role ARN
|
18 |
-
# aws_role = os.environ['AWS_ROLE_DATA_TEXT_SEARCH']
|
19 |
-
# response = sts.assume_role(
|
20 |
-
# RoleArn=aws_role,
|
21 |
-
# RoleSessionName="ecs-test-session"
|
22 |
-
# )
|
23 |
-
# print(response)
|
24 |
-
|
25 |
-
|
26 |
def get_assumed_role_info():
|
27 |
sts = boto3.client('sts', region_name='eu-west-2', endpoint_url='https://sts.eu-west-2.amazonaws.com')
|
28 |
response = sts.get_caller_identity()
|
|
|
13 |
bucket_name = ''
|
14 |
print(e)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def get_assumed_role_info():
|
17 |
sts = boto3.client('sts', region_name='eu-west-2', endpoint_url='https://sts.eu-west-2.amazonaws.com')
|
18 |
response = sts.get_caller_identity()
|
tools/constants.py
CHANGED
@@ -11,6 +11,24 @@ from .pytorch_models import *
|
|
11 |
PandasDataFrame = Type[pd.DataFrame]
|
12 |
PandasSeries = Type[pd.Series]
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# +
|
15 |
''' Fuzzywuzzy/Rapidfuzz scorer to use. Options are: ratio, partial_ratio, token_sort_ratio, partial_token_sort_ratio,
|
16 |
token_set_ratio, partial_token_set_ratio, QRatio, UQRatio, WRatio (default), UWRatio
|
@@ -18,17 +36,11 @@ details here: https://stackoverflow.com/questions/31806695/when-to-use-which-fuz
|
|
18 |
|
19 |
fuzzy_scorer_used = "token_set_ratio"
|
20 |
|
21 |
-
# +
|
22 |
fuzzy_match_limit = 85
|
23 |
-
|
24 |
fuzzy_search_addr_limit = 20
|
25 |
-
|
26 |
filter_to_lambeth_pcodes= True
|
27 |
-
# -
|
28 |
-
|
29 |
standardise = False
|
30 |
|
31 |
-
# +
|
32 |
if standardise == True:
|
33 |
std = "_std"
|
34 |
if standardise == False:
|
@@ -40,8 +52,7 @@ suffix_used = dataset_name + "_" + fuzzy_scorer_used
|
|
40 |
|
41 |
# https://stackoverflow.com/questions/59221557/tensorflow-v2-replacement-for-tf-contrib-predictor-from-saved-model
|
42 |
|
43 |
-
|
44 |
-
print(ROOT_DIR)
|
45 |
|
46 |
# Uncomment these lines for the tensorflow model
|
47 |
#model_type = "tf"
|
@@ -66,30 +77,32 @@ device = "cpu"
|
|
66 |
global labels_list
|
67 |
labels_list = []
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
model_dir_name = os.path.join(ROOT_DIR, "nnet_model" , model_stub , model_version)
|
70 |
-
print(model_dir_name)
|
71 |
|
72 |
model_path = os.path.join(model_dir_name, "saved_model.zip")
|
73 |
-
print("
|
74 |
-
print(model_path)
|
75 |
|
76 |
if os.path.exists(model_path):
|
77 |
|
78 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # Better to go without GPU to avoid 'out of memory' issues
|
79 |
device = "cpu"
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
## The labels_list object defines the structure of the prediction outputs. It must be the same as what the model was originally trained on
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
''' Load pre-trained model '''
|
88 |
|
89 |
-
|
90 |
-
|
91 |
with zipfile.ZipFile(model_path,"r") as zip_ref:
|
92 |
-
zip_ref.extractall(
|
93 |
|
94 |
# if model_stub == "addr_model_out_lon":
|
95 |
|
@@ -143,16 +156,15 @@ if os.path.exists(model_path):
|
|
143 |
'Postcode', # 14
|
144 |
'IGNORE'
|
145 |
]
|
146 |
-
|
147 |
-
#labels_list.to_csv("labels_list.csv", index = None)
|
148 |
|
149 |
if (model_type == "transformer") | (model_type == "gru") | (model_type == "lstm") :
|
150 |
# Load vocab and word_to_index
|
151 |
-
with open(
|
152 |
vocab = eval(f.read())
|
153 |
-
with open(
|
154 |
word_to_index = eval(f.read())
|
155 |
-
with open(
|
156 |
cat_to_idx = eval(f.read())
|
157 |
|
158 |
VOCAB_SIZE = len(word_to_index)
|
@@ -180,8 +192,12 @@ if os.path.exists(model_path):
|
|
180 |
exported_model = LSTMTextClassifier(VOCAB_SIZE, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS, DROPOUT, PAD_TOKEN)
|
181 |
|
182 |
|
183 |
-
|
184 |
-
"_" + str(N_EPOCHS) + "_" + model_type + ".pth"
|
|
|
|
|
|
|
|
|
185 |
exported_model.eval()
|
186 |
|
187 |
device='cpu'
|
@@ -196,13 +212,7 @@ if os.path.exists(model_path):
|
|
196 |
|
197 |
else: exported_model = []
|
198 |
|
199 |
-
|
200 |
-
# exported_model = exported_model
|
201 |
-
#else: exported_model = []
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
# +
|
206 |
# Address matcher will try to match <batch_size> records in one go to avoid exceeding memory limits.
|
207 |
batch_size = 10000
|
208 |
ref_batch_size = 150000
|
@@ -215,7 +225,6 @@ ref_batch_size = 150000
|
|
215 |
|
216 |
Comparison of some of the Jellyfish string comparison methods: https://manpages.debian.org/testing/python-jellyfish-doc/jellyfish.3.en.html '''
|
217 |
|
218 |
-
|
219 |
fuzzy_method = "jarowinkler"
|
220 |
|
221 |
# Required overall match score for all columns to count as a match
|
|
|
11 |
PandasDataFrame = Type[pd.DataFrame]
|
12 |
PandasSeries = Type[pd.Series]
|
13 |
|
14 |
+
def get_or_create_env_var(var_name, default_value):
|
15 |
+
# Get the environment variable if it exists
|
16 |
+
value = os.environ.get(var_name)
|
17 |
+
|
18 |
+
# If it doesn't exist, set it to the default value
|
19 |
+
if value is None:
|
20 |
+
os.environ[var_name] = default_value
|
21 |
+
value = default_value
|
22 |
+
|
23 |
+
return value
|
24 |
+
|
25 |
+
# Retrieving or setting output folder
|
26 |
+
env_var_name = 'GRADIO_OUTPUT_FOLDER'
|
27 |
+
default_value = 'output/'
|
28 |
+
|
29 |
+
output_folder = get_or_create_env_var(env_var_name, default_value)
|
30 |
+
print(f'The value of {env_var_name} is {output_folder}')
|
31 |
+
|
32 |
# +
|
33 |
''' Fuzzywuzzy/Rapidfuzz scorer to use. Options are: ratio, partial_ratio, token_sort_ratio, partial_token_sort_ratio,
|
34 |
token_set_ratio, partial_token_set_ratio, QRatio, UQRatio, WRatio (default), UWRatio
|
|
|
36 |
|
37 |
fuzzy_scorer_used = "token_set_ratio"
|
38 |
|
|
|
39 |
fuzzy_match_limit = 85
|
|
|
40 |
fuzzy_search_addr_limit = 20
|
|
|
41 |
filter_to_lambeth_pcodes= True
|
|
|
|
|
42 |
standardise = False
|
43 |
|
|
|
44 |
if standardise == True:
|
45 |
std = "_std"
|
46 |
if standardise == False:
|
|
|
52 |
|
53 |
# https://stackoverflow.com/questions/59221557/tensorflow-v2-replacement-for-tf-contrib-predictor-from-saved-model
|
54 |
|
55 |
+
|
|
|
56 |
|
57 |
# Uncomment these lines for the tensorflow model
|
58 |
#model_type = "tf"
|
|
|
77 |
global labels_list
|
78 |
labels_list = []
|
79 |
|
80 |
+
ROOT_DIR = os.path.realpath(os.path.join(os.path.dirname(__file__), '..'))
|
81 |
+
|
82 |
+
# If in a non-standard location (e.g. on AWS Lambda Function URL, then save model to tmp drive)
|
83 |
+
if output_folder == "output/":
|
84 |
+
out_model_dir = ROOT_DIR
|
85 |
+
print(out_model_dir)
|
86 |
+
else:
|
87 |
+
out_model_dir = output_folder[:-1]
|
88 |
+
print(out_model_dir)
|
89 |
+
|
90 |
model_dir_name = os.path.join(ROOT_DIR, "nnet_model" , model_stub , model_version)
|
|
|
91 |
|
92 |
model_path = os.path.join(model_dir_name, "saved_model.zip")
|
93 |
+
print("Model zip path: ", model_path)
|
|
|
94 |
|
95 |
if os.path.exists(model_path):
|
96 |
|
97 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # Better to go without GPU to avoid 'out of memory' issues
|
98 |
device = "cpu"
|
99 |
+
|
|
|
|
|
100 |
## The labels_list object defines the structure of the prediction outputs. It must be the same as what the model was originally trained on
|
101 |
+
|
|
|
|
|
102 |
''' Load pre-trained model '''
|
103 |
|
|
|
|
|
104 |
with zipfile.ZipFile(model_path,"r") as zip_ref:
|
105 |
+
zip_ref.extractall(out_model_dir)
|
106 |
|
107 |
# if model_stub == "addr_model_out_lon":
|
108 |
|
|
|
156 |
'Postcode', # 14
|
157 |
'IGNORE'
|
158 |
]
|
159 |
+
|
|
|
160 |
|
161 |
if (model_type == "transformer") | (model_type == "gru") | (model_type == "lstm") :
|
162 |
# Load vocab and word_to_index
|
163 |
+
with open(out_model_dir + "/vocab.txt", "r") as f:
|
164 |
vocab = eval(f.read())
|
165 |
+
with open(out_model_dir + "/word_to_index.txt", "r") as f:
|
166 |
word_to_index = eval(f.read())
|
167 |
+
with open(out_model_dir + "/cat_to_idx.txt", "r") as f:
|
168 |
cat_to_idx = eval(f.read())
|
169 |
|
170 |
VOCAB_SIZE = len(word_to_index)
|
|
|
192 |
exported_model = LSTMTextClassifier(VOCAB_SIZE, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS, DROPOUT, PAD_TOKEN)
|
193 |
|
194 |
|
195 |
+
out_model_file_name = "output_model_" + str(data_sample_size) +\
|
196 |
+
"_" + str(N_EPOCHS) + "_" + model_type + ".pth"
|
197 |
+
|
198 |
+
out_model_path = os.path.join(out_model_dir, out_model_file_name)
|
199 |
+
print("Model location: ", out_model_path)
|
200 |
+
exported_model.load_state_dict(torch.load(out_model_path, map_location=torch.device('cpu')))
|
201 |
exported_model.eval()
|
202 |
|
203 |
device='cpu'
|
|
|
212 |
|
213 |
else: exported_model = []
|
214 |
|
215 |
+
### ADDRESS MATCHING FUNCTIONS
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
# Address matcher will try to match <batch_size> records in one go to avoid exceeding memory limits.
|
217 |
batch_size = 10000
|
218 |
ref_batch_size = 150000
|
|
|
225 |
|
226 |
Comparison of some of the Jellyfish string comparison methods: https://manpages.debian.org/testing/python-jellyfish-doc/jellyfish.3.en.html '''
|
227 |
|
|
|
228 |
fuzzy_method = "jarowinkler"
|
229 |
|
230 |
# Required overall match score for all columns to count as a match
|
tools/gradio.py
CHANGED
@@ -60,9 +60,9 @@ def ensure_output_folder_exists(output_folder):
|
|
60 |
if not os.path.exists(folder_name):
|
61 |
# Create the folder if it doesn't exist
|
62 |
os.makedirs(folder_name)
|
63 |
-
print(f"Created the output folder
|
64 |
else:
|
65 |
-
print(f"The output folder already exists
|
66 |
|
67 |
def dummy_function(in_colnames):
|
68 |
"""
|
@@ -72,4 +72,5 @@ def dummy_function(in_colnames):
|
|
72 |
|
73 |
|
74 |
def clear_inputs(in_file, in_ref, in_text):
|
75 |
-
return gr.File
|
|
|
|
60 |
if not os.path.exists(folder_name):
|
61 |
# Create the folder if it doesn't exist
|
62 |
os.makedirs(folder_name)
|
63 |
+
print(f"Created the output folder:", folder_name)
|
64 |
else:
|
65 |
+
print(f"The output folder already exists:", folder_name)
|
66 |
|
67 |
def dummy_function(in_colnames):
|
68 |
"""
|
|
|
72 |
|
73 |
|
74 |
def clear_inputs(in_file, in_ref, in_text):
|
75 |
+
return gr.File(value=[]), gr.File(value=[]), gr.Textbox(value='')
|
76 |
+
|
tools/matcher_funcs.py
CHANGED
@@ -169,7 +169,7 @@ def run_all_api_calls(in_api_key:str, Matcher:MatcherClass, query_type:str, prog
|
|
169 |
if (i + 1) % 500 == 0:
|
170 |
print("Saving api call checkpoint for query:", str(i + 1))
|
171 |
|
172 |
-
pd.concat(loop_list).to_parquet(api_ref_save_loc + ".parquet", index=False)
|
173 |
|
174 |
return loop_list
|
175 |
|
@@ -351,8 +351,8 @@ def run_all_api_calls(in_api_key:str, Matcher:MatcherClass, query_type:str, prog
|
|
351 |
|
352 |
if save_file:
|
353 |
print("Saving reference file to: " + api_ref_save_loc[:-5] + ".parquet")
|
354 |
-
Matcher.ref_df.to_parquet(api_ref_save_loc + ".parquet", index=False) # Save checkpoint as well
|
355 |
-
Matcher.ref_df.to_parquet(api_ref_save_loc[:-5] + ".parquet", index=False)
|
356 |
|
357 |
if Matcher.ref_df.empty:
|
358 |
print ("No reference data found with API")
|
@@ -676,8 +676,8 @@ def load_matcher_data(in_text, in_file, in_ref, data_state, results_data_state,
|
|
676 |
print("Shape of ref_df after filtering is: ", Matcher.ref_df.shape)
|
677 |
print("Shape of search_df after filtering is: ", Matcher.search_df.shape)
|
678 |
|
679 |
-
Matcher.match_outputs_name = "
|
680 |
-
Matcher.results_orig_df_name = "
|
681 |
|
682 |
Matcher.match_results_output.to_csv(Matcher.match_outputs_name, index = None)
|
683 |
Matcher.results_on_orig_df.to_csv(Matcher.results_orig_df_name, index = None)
|
@@ -724,10 +724,6 @@ def run_matcher(in_text:str, in_file:str, in_ref:str, data_state:PandasDataFrame
|
|
724 |
InitMatch.ref_df_cleaned = prepare_ref_address(InitMatch.ref_df, InitMatch.ref_address_cols, InitMatch.new_join_col)
|
725 |
|
726 |
|
727 |
-
# Sort dataframes by postcode - will allow for more efficient matching process if using multiple batches
|
728 |
-
#InitMatch.search_df_cleaned = InitMatch.search_df_cleaned.sort_values(by="postcode")
|
729 |
-
#InitMatch.ref_df_cleaned = InitMatch.ref_df_cleaned.sort_values(by="Postcode")
|
730 |
-
|
731 |
# Polars implementation - not finalised
|
732 |
#InitMatch.search_df_cleaned = InitMatch.search_df_cleaned.to_pandas()
|
733 |
#InitMatch.ref_df_cleaned = InitMatch.ref_df_cleaned.to_pandas()
|
@@ -777,31 +773,10 @@ def run_matcher(in_text:str, in_file:str, in_ref:str, data_state:PandasDataFrame
|
|
777 |
|
778 |
search_range = range_df.iloc[row]['search_range']
|
779 |
ref_range = range_df.iloc[row]['ref_range']
|
780 |
-
|
781 |
-
#print("search_range: ", search_range)
|
782 |
-
#pd.DataFrame(search_range).to_csv("search_range.csv")
|
783 |
-
#print("ref_range: ", ref_range)
|
784 |
|
785 |
BatchMatch = copy.copy(InitMatch)
|
786 |
|
787 |
# Subset the search and reference dfs based on current batch ranges
|
788 |
-
# BatchMatch.search_df = BatchMatch.search_df.iloc[search_range[0]:search_range[1] + 1,:].reset_index(drop=True)
|
789 |
-
# BatchMatch.search_df_not_matched = BatchMatch.search_df.copy()
|
790 |
-
# BatchMatch.search_df_cleaned = BatchMatch.search_df_cleaned.iloc[search_range[0]:search_range[1] + 1,:].reset_index(drop=True)
|
791 |
-
# BatchMatch.ref_df = BatchMatch.ref_df.iloc[ref_range[0]:ref_range[1] + 1,:].reset_index(drop=True)
|
792 |
-
# BatchMatch.ref_df_cleaned = BatchMatch.ref_df_cleaned.iloc[ref_range[0]:ref_range[1] + 1,:].reset_index(drop=True)
|
793 |
-
|
794 |
-
|
795 |
-
# BatchMatch.search_df_after_stand_series = BatchMatch.search_df_after_stand_series.iloc[search_range[0]:search_range[1] + 1]
|
796 |
-
# BatchMatch.ref_df_after_stand_series = BatchMatch.ref_df_after_stand_series.iloc[ref_range[0]:ref_range[1] + 1]
|
797 |
-
# BatchMatch.search_df_after_stand_series_full_stand = BatchMatch.search_df_after_stand_series_full_stand.iloc[search_range[0]:search_range[1] + 1]
|
798 |
-
# BatchMatch.ref_df_after_stand_series_full_stand = BatchMatch.ref_df_after_stand_series_full_stand.iloc[ref_range[0]:ref_range[1] + 1]
|
799 |
-
|
800 |
-
# BatchMatch.search_df_after_stand = BatchMatch.search_df_after_stand.iloc[search_range[0]:search_range[1] + 1,:].reset_index(drop=True)
|
801 |
-
# BatchMatch.ref_df_after_stand = BatchMatch.ref_df_after_stand.iloc[ref_range[0]:ref_range[1] + 1,:].reset_index(drop=True)
|
802 |
-
# BatchMatch.search_df_after_full_stand = BatchMatch.search_df_after_full_stand.iloc[search_range[0]:search_range[1] + 1,:].reset_index(drop=True)
|
803 |
-
# BatchMatch.ref_df_after_full_stand = BatchMatch.ref_df_after_full_stand.iloc[ref_range[0]:ref_range[1] + 1,:].reset_index(drop=True)
|
804 |
-
|
805 |
BatchMatch.search_df = BatchMatch.search_df[BatchMatch.search_df.index.isin(search_range)].reset_index(drop=True)
|
806 |
BatchMatch.search_df_not_matched = BatchMatch.search_df.copy()
|
807 |
BatchMatch.search_df_cleaned = BatchMatch.search_df_cleaned[BatchMatch.search_df_cleaned.index.isin(search_range)].reset_index(drop=True)
|
@@ -814,25 +789,9 @@ def run_matcher(in_text:str, in_file:str, in_ref:str, data_state:PandasDataFrame
|
|
814 |
BatchMatch.search_df_after_full_stand = BatchMatch.search_df_after_full_stand[BatchMatch.search_df_after_full_stand.index.isin(search_range)].reset_index(drop=True)
|
815 |
|
816 |
### Create lookup lists for fuzzy matches
|
817 |
-
# BatchMatch.search_df_after_stand_series = BatchMatch.search_df_after_stand.copy().set_index('postcode_search')['search_address_stand']
|
818 |
-
# BatchMatch.search_df_after_stand_series_full_stand = BatchMatch.search_df_after_full_stand.copy().set_index('postcode_search')['search_address_stand']
|
819 |
-
# BatchMatch.search_df_after_stand_series = BatchMatch.search_df_after_stand_series.sort_index()
|
820 |
-
# BatchMatch.search_df_after_stand_series_full_stand = BatchMatch.search_df_after_stand_series_full_stand.sort_index()
|
821 |
-
|
822 |
-
#BatchMatch.search_df_after_stand.reset_index(inplace=True, drop = True)
|
823 |
-
#BatchMatch.search_df_after_full_stand.reset_index(inplace=True, drop = True)
|
824 |
-
|
825 |
BatchMatch.ref_df_after_stand = BatchMatch.ref_df_after_stand[BatchMatch.ref_df_after_stand.index.isin(ref_range)].reset_index(drop=True)
|
826 |
BatchMatch.ref_df_after_full_stand = BatchMatch.ref_df_after_full_stand[BatchMatch.ref_df_after_full_stand.index.isin(ref_range)].reset_index(drop=True)
|
827 |
|
828 |
-
# BatchMatch.ref_df_after_stand_series = BatchMatch.ref_df_after_stand.copy().set_index('postcode_search')['ref_address_stand']
|
829 |
-
# BatchMatch.ref_df_after_stand_series_full_stand = BatchMatch.ref_df_after_full_stand.copy().set_index('postcode_search')['ref_address_stand']
|
830 |
-
# BatchMatch.ref_df_after_stand_series = BatchMatch.ref_df_after_stand_series.sort_index()
|
831 |
-
# BatchMatch.ref_df_after_stand_series_full_stand = BatchMatch.ref_df_after_stand_series_full_stand.sort_index()
|
832 |
-
|
833 |
-
# BatchMatch.ref_df_after_stand.reset_index(inplace=True, drop=True)
|
834 |
-
# BatchMatch.ref_df_after_full_stand.reset_index(inplace=True, drop=True)
|
835 |
-
|
836 |
# Match the data, unless the search or reference dataframes are empty
|
837 |
if BatchMatch.search_df.empty or BatchMatch.ref_df.empty:
|
838 |
out_message = "Nothing to match for batch: " + str(n)
|
@@ -938,8 +897,6 @@ def create_batch_ranges(df:PandasDataFrame, ref_df:PandasDataFrame, batch_size:i
|
|
938 |
df = df.sort_index()
|
939 |
ref_df = ref_df.sort_index()
|
940 |
|
941 |
-
#df.to_csv("batch_search_df.csv")
|
942 |
-
|
943 |
# Overall batch variables
|
944 |
batch_indexes = []
|
945 |
ref_indexes = []
|
@@ -1184,8 +1141,8 @@ def orchestrate_match_run(Matcher, standardise = False, nnet = False, file_stub=
|
|
1184 |
|
1185 |
Matcher.output_summary = create_match_summary(Matcher.match_results_output, df_name = df_name)
|
1186 |
|
1187 |
-
Matcher.match_outputs_name = "
|
1188 |
-
Matcher.results_orig_df_name = "
|
1189 |
|
1190 |
Matcher.match_results_output.to_csv(Matcher.match_outputs_name, index = None)
|
1191 |
Matcher.results_on_orig_df.to_csv(Matcher.results_orig_df_name, index = None)
|
@@ -1233,14 +1190,9 @@ def full_fuzzy_match(search_df:PandasDataFrame,
|
|
1233 |
# Remove rows from ref search series where postcode is not found in the search_df
|
1234 |
search_df_after_stand_series = search_df_after_stand.copy().set_index('postcode_search')['search_address_stand'].sort_index()
|
1235 |
ref_df_after_stand_series = ref_df_after_stand.copy().set_index('postcode_search')['ref_address_stand'].sort_index()
|
1236 |
-
|
1237 |
-
#print(search_df_after_stand_series.index.tolist())
|
1238 |
-
#print(ref_df_after_stand_series.index.tolist())
|
1239 |
-
|
1240 |
ref_df_after_stand_series_checked = ref_df_after_stand_series.copy()[ref_df_after_stand_series.index.isin(search_df_after_stand_series.index.tolist())]
|
1241 |
|
1242 |
-
# pd.DataFrame(ref_df_after_stand_series_checked.to_csv("ref_df_after_stand_series_checked.csv"))
|
1243 |
-
|
1244 |
if len(ref_df_after_stand_series_checked) == 0:
|
1245 |
print("Nothing relevant in reference data to match!")
|
1246 |
return pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),pd.DataFrame(),"Nothing relevant in reference data to match!",search_address_cols
|
@@ -1603,8 +1555,8 @@ def combine_two_matches(OrigMatchClass:MatcherClass, NewMatchClass:MatcherClass,
|
|
1603 |
### Rejoin the excluded matches onto the output file
|
1604 |
#NewMatchClass.results_on_orig_df = pd.concat([NewMatchClass.results_on_orig_df, NewMatchClass.excluded_df])
|
1605 |
|
1606 |
-
NewMatchClass.match_outputs_name = "
|
1607 |
-
NewMatchClass.results_orig_df_name = "
|
1608 |
|
1609 |
# Only keep essential columns
|
1610 |
essential_results_cols = [NewMatchClass.search_df_key_field, "Excluded from search", "Matched with reference address", "ref_index", "Reference matched address", "Reference file"]
|
|
|
169 |
if (i + 1) % 500 == 0:
|
170 |
print("Saving api call checkpoint for query:", str(i + 1))
|
171 |
|
172 |
+
pd.concat(loop_list).to_parquet(output_folder + api_ref_save_loc + ".parquet", index=False)
|
173 |
|
174 |
return loop_list
|
175 |
|
|
|
351 |
|
352 |
if save_file:
|
353 |
print("Saving reference file to: " + api_ref_save_loc[:-5] + ".parquet")
|
354 |
+
Matcher.ref_df.to_parquet(output_folder + api_ref_save_loc + ".parquet", index=False) # Save checkpoint as well
|
355 |
+
Matcher.ref_df.to_parquet(output_folder + api_ref_save_loc[:-5] + ".parquet", index=False)
|
356 |
|
357 |
if Matcher.ref_df.empty:
|
358 |
print ("No reference data found with API")
|
|
|
676 |
print("Shape of ref_df after filtering is: ", Matcher.ref_df.shape)
|
677 |
print("Shape of search_df after filtering is: ", Matcher.search_df.shape)
|
678 |
|
679 |
+
Matcher.match_outputs_name = output_folder + "diagnostics_initial_" + today_rev + ".csv"
|
680 |
+
Matcher.results_orig_df_name = output_folder + "results_initial_" + today_rev + ".csv"
|
681 |
|
682 |
Matcher.match_results_output.to_csv(Matcher.match_outputs_name, index = None)
|
683 |
Matcher.results_on_orig_df.to_csv(Matcher.results_orig_df_name, index = None)
|
|
|
724 |
InitMatch.ref_df_cleaned = prepare_ref_address(InitMatch.ref_df, InitMatch.ref_address_cols, InitMatch.new_join_col)
|
725 |
|
726 |
|
|
|
|
|
|
|
|
|
727 |
# Polars implementation - not finalised
|
728 |
#InitMatch.search_df_cleaned = InitMatch.search_df_cleaned.to_pandas()
|
729 |
#InitMatch.ref_df_cleaned = InitMatch.ref_df_cleaned.to_pandas()
|
|
|
773 |
|
774 |
search_range = range_df.iloc[row]['search_range']
|
775 |
ref_range = range_df.iloc[row]['ref_range']
|
|
|
|
|
|
|
|
|
776 |
|
777 |
BatchMatch = copy.copy(InitMatch)
|
778 |
|
779 |
# Subset the search and reference dfs based on current batch ranges
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
780 |
BatchMatch.search_df = BatchMatch.search_df[BatchMatch.search_df.index.isin(search_range)].reset_index(drop=True)
|
781 |
BatchMatch.search_df_not_matched = BatchMatch.search_df.copy()
|
782 |
BatchMatch.search_df_cleaned = BatchMatch.search_df_cleaned[BatchMatch.search_df_cleaned.index.isin(search_range)].reset_index(drop=True)
|
|
|
789 |
BatchMatch.search_df_after_full_stand = BatchMatch.search_df_after_full_stand[BatchMatch.search_df_after_full_stand.index.isin(search_range)].reset_index(drop=True)
|
790 |
|
791 |
### Create lookup lists for fuzzy matches
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
792 |
BatchMatch.ref_df_after_stand = BatchMatch.ref_df_after_stand[BatchMatch.ref_df_after_stand.index.isin(ref_range)].reset_index(drop=True)
|
793 |
BatchMatch.ref_df_after_full_stand = BatchMatch.ref_df_after_full_stand[BatchMatch.ref_df_after_full_stand.index.isin(ref_range)].reset_index(drop=True)
|
794 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
795 |
# Match the data, unless the search or reference dataframes are empty
|
796 |
if BatchMatch.search_df.empty or BatchMatch.ref_df.empty:
|
797 |
out_message = "Nothing to match for batch: " + str(n)
|
|
|
897 |
df = df.sort_index()
|
898 |
ref_df = ref_df.sort_index()
|
899 |
|
|
|
|
|
900 |
# Overall batch variables
|
901 |
batch_indexes = []
|
902 |
ref_indexes = []
|
|
|
1141 |
|
1142 |
Matcher.output_summary = create_match_summary(Matcher.match_results_output, df_name = df_name)
|
1143 |
|
1144 |
+
Matcher.match_outputs_name = output_folder + "diagnostics_" + file_stub + today_rev + ".csv"
|
1145 |
+
Matcher.results_orig_df_name = output_folder + "results_" + file_stub + today_rev + ".csv"
|
1146 |
|
1147 |
Matcher.match_results_output.to_csv(Matcher.match_outputs_name, index = None)
|
1148 |
Matcher.results_on_orig_df.to_csv(Matcher.results_orig_df_name, index = None)
|
|
|
1190 |
# Remove rows from ref search series where postcode is not found in the search_df
|
1191 |
search_df_after_stand_series = search_df_after_stand.copy().set_index('postcode_search')['search_address_stand'].sort_index()
|
1192 |
ref_df_after_stand_series = ref_df_after_stand.copy().set_index('postcode_search')['ref_address_stand'].sort_index()
|
1193 |
+
|
|
|
|
|
|
|
1194 |
ref_df_after_stand_series_checked = ref_df_after_stand_series.copy()[ref_df_after_stand_series.index.isin(search_df_after_stand_series.index.tolist())]
|
1195 |
|
|
|
|
|
1196 |
if len(ref_df_after_stand_series_checked) == 0:
|
1197 |
print("Nothing relevant in reference data to match!")
|
1198 |
return pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),pd.DataFrame(),"Nothing relevant in reference data to match!",search_address_cols
|
|
|
1555 |
### Rejoin the excluded matches onto the output file
|
1556 |
#NewMatchClass.results_on_orig_df = pd.concat([NewMatchClass.results_on_orig_df, NewMatchClass.excluded_df])
|
1557 |
|
1558 |
+
NewMatchClass.match_outputs_name = output_folder + "diagnostics_" + today_rev + ".csv" # + NewMatchClass.file_name + "_"
|
1559 |
+
NewMatchClass.results_orig_df_name = output_folder + "results_" + today_rev + ".csv" # + NewMatchClass.file_name + "_"
|
1560 |
|
1561 |
# Only keep essential columns
|
1562 |
essential_results_cols = [NewMatchClass.search_df_key_field, "Excluded from search", "Matched with reference address", "ref_index", "Reference matched address", "Reference file"]
|
tools/model_predict.py
CHANGED
@@ -15,10 +15,6 @@ today_rev = datetime.now().strftime("%Y%m%d")
|
|
15 |
|
16 |
# # Neural net functions
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
def vocab_lookup(characters: str, vocab) -> (int, np.ndarray):
|
23 |
"""
|
24 |
Taken from the function from the addressnet package by Jason Rigby
|
@@ -298,21 +294,10 @@ def post_predict_clean(predict_df, orig_search_df, ref_address_cols, search_df_k
|
|
298 |
|
299 |
predict_df = predict_df.rename(columns={"Postcode":"Postcode_predict"})
|
300 |
|
301 |
-
#orig_search_df.to_csv("orig_search_df_pre_predict.csv")
|
302 |
-
|
303 |
orig_search_df_pc = orig_search_df[[search_df_key_field, "postcode"]].rename(columns={"postcode":"Postcode"}).reset_index(drop=True)
|
304 |
predict_df = predict_df.merge(orig_search_df_pc, left_index=True, right_index=True, how = "left")
|
305 |
|
306 |
-
#predict_df = pd.concat([predict_df, orig_search_df_pc], axis = 1)
|
307 |
-
|
308 |
-
#predict_df[search_df_key_field] = orig_search_df[search_df_key_field]
|
309 |
-
|
310 |
-
#predict_df = predict_df.drop("index", axis=1)
|
311 |
-
|
312 |
-
#predict_df['index'] = predict_df.index
|
313 |
predict_df[search_df_key_field] = predict_df[search_df_key_field].astype(str)
|
314 |
-
|
315 |
-
#predict_df.to_csv("predict_end_of_clean.csv")
|
316 |
|
317 |
return predict_df
|
318 |
|
|
|
15 |
|
16 |
# # Neural net functions
|
17 |
|
|
|
|
|
|
|
|
|
18 |
def vocab_lookup(characters: str, vocab) -> (int, np.ndarray):
|
19 |
"""
|
20 |
Taken from the function from the addressnet package by Jason Rigby
|
|
|
294 |
|
295 |
predict_df = predict_df.rename(columns={"Postcode":"Postcode_predict"})
|
296 |
|
|
|
|
|
297 |
orig_search_df_pc = orig_search_df[[search_df_key_field, "postcode"]].rename(columns={"postcode":"Postcode"}).reset_index(drop=True)
|
298 |
predict_df = predict_df.merge(orig_search_df_pc, left_index=True, right_index=True, how = "left")
|
299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
predict_df[search_df_key_field] = predict_df[search_df_key_field].astype(str)
|
|
|
|
|
301 |
|
302 |
return predict_df
|
303 |
|
tools/recordlinkage_funcs.py
CHANGED
@@ -93,7 +93,6 @@ def calc_final_nnet_scores(scoresSBM, weights, matching_variables):
|
|
93 |
scoresSBM_r = scoresSBM_r.sort_values(by=["level_0","score_perc"], ascending = False)
|
94 |
|
95 |
# Within each search address, remove anything below the max
|
96 |
-
#scoresSBM_r.to_csv("scoresSBM_r.csv")
|
97 |
scoresSBM_g = scoresSBM_r.reset_index()
|
98 |
|
99 |
# Get maximum score to join on
|
@@ -114,8 +113,6 @@ def join_on_pred_ref_details(scoresSBM_search_m, ref_search, predict_df_search):
|
|
114 |
|
115 |
scoresSBM_search_m_j = scoresSBM_search_m_j.reindex(sorted(scoresSBM_search_m_j.columns), axis=1)
|
116 |
|
117 |
-
#scoresSBM_search_m_j.to_csv("scoresSBM_search_m_j.csv")
|
118 |
-
|
119 |
return scoresSBM_search_m_j
|
120 |
|
121 |
def rearrange_columns(scoresSBM_search_m_j, new_join_col, search_df_key_field, blocker_column, standardise):
|
@@ -175,14 +172,10 @@ def rearrange_columns(scoresSBM_search_m_j, new_join_col, search_df_key_field, b
|
|
175 |
|
176 |
scoresSBM_out = scoresSBM_search_m_j[final_cols]
|
177 |
|
178 |
-
#scoresSBM_out.to_csv("scoresSBM_out" + "_" + blocker_column[0] + "_" + str(standardise) + ".csv")
|
179 |
-
|
180 |
return scoresSBM_out, start_columns
|
181 |
|
182 |
def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search_df, new_join_col, standardise, ref_search, blocker_column, score_cut_off):
|
183 |
|
184 |
-
#scoresSBM_best.to_csv("scores_sbm_best_" + str(standardise) + ".csv")
|
185 |
-
|
186 |
### Make the final 'matched output' file
|
187 |
scoresSBM_best_pred_cols = scoresSBM_best.filter(regex='_pred$').iloc[:,1:-1]
|
188 |
scoresSBM_best["search_orig_address"] = (scoresSBM_best_pred_cols.agg(' '.join, axis=1)).str.strip().str.replace("\s{2,}", " ", regex=True)
|
@@ -199,22 +192,16 @@ def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search
|
|
199 |
'full_match_score_based', 'Reference file']], on = search_df_key_field, how = "left").\
|
200 |
rename(columns={"full_address":"search_orig_address"})
|
201 |
|
202 |
-
#ref_search.to_csv("ref_search.csv")
|
203 |
-
|
204 |
if 'index' not in ref_search.columns:
|
205 |
ref_search['ref_index'] = ref_search.index
|
206 |
|
207 |
matched_output_SBM = matched_output_SBM.merge(ref_search.drop_duplicates("fulladdress")[["ref_index", "fulladdress", "Postcode", "property_number", "prop_number", "flat_number", "apart_number", "block_number", 'unit_number', "room_number", "house_court_name", "ref_address_stand"]], left_on = "address_ref", right_on = "fulladdress", how = "left", suffixes=('_search', '_reference')).rename(columns={"fulladdress":"reference_orig_address", "ref_address_stand":"reference_list_address"})
|
208 |
|
209 |
-
#matched_output_SBM.to_csv("matched_output_SBM_earlier_" + str(standardise) + ".csv")
|
210 |
-
|
211 |
# To replace with number check
|
212 |
|
213 |
-
|
214 |
matched_output_SBM = matched_output_SBM.rename(columns={"full_match_score_based":"full_match"})
|
215 |
|
216 |
matched_output_SBM['property_number_match'] = matched_output_SBM['full_match']
|
217 |
-
#
|
218 |
|
219 |
scores_SBM_best_cols = [search_df_key_field, 'full_match_score_based', 'perc_weighted_columns_matched', 'address_pred']#, "reference_mod_address"]
|
220 |
scores_SBM_best_cols.extend(new_join_col)
|
@@ -223,20 +210,13 @@ def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search
|
|
223 |
|
224 |
matched_output_SBM = matched_output_SBM.merge(matched_output_SBM_b.drop_duplicates(search_df_key_field), on = search_df_key_field, how = "left")
|
225 |
|
226 |
-
#matched_output_SBM.to_csv("matched_output_SBM_later_" + str(standardise) + ".csv")
|
227 |
-
|
228 |
from tools.fuzzy_match import create_diag_shortlist
|
229 |
matched_output_SBM = create_diag_shortlist(matched_output_SBM, "search_orig_address", score_cut_off, blocker_column, fuzzy_col='perc_weighted_columns_matched', search_mod_address="address_pred", resolve_tie_breaks=False)
|
230 |
|
231 |
-
#matched_output_SBM.to_csv("matched_output_after.csv")
|
232 |
-
|
233 |
-
#matched_output_SBM["UPRN"] = scoresSBM_best['UPRN']
|
234 |
|
235 |
matched_output_SBM['standardised_address'] = standardise
|
236 |
|
237 |
-
matched_output_SBM = matched_output_SBM.rename(columns={"address_pred":"search_mod_address",
|
238 |
-
#"address_ref":"reference_orig_address",
|
239 |
-
#"full_match_score_based":"fuzzy_score_match",
|
240 |
'perc_weighted_columns_matched':"fuzzy_score"})
|
241 |
|
242 |
matched_output_SBM_cols = [search_df_key_field, 'search_orig_address','reference_orig_address',
|
@@ -257,10 +237,6 @@ def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search
|
|
257 |
"unit_number_search","unit_number_reference",
|
258 |
'house_court_name_search', 'house_court_name_reference',
|
259 |
"search_mod_address", 'reference_mod_address','Postcode', 'postcode', 'ref_index', 'Reference file']
|
260 |
-
|
261 |
-
#matched_output_SBM_cols = [search_df_key_field, 'search_orig_address', 'reference_orig_address',
|
262 |
-
#'full_match', 'fuzzy_score_match', 'property_number_match', 'full_number_match',
|
263 |
-
#'fuzzy_score', 'search_mod_address', 'reference_mod_address', 'Reference file']
|
264 |
|
265 |
matched_output_SBM_cols.extend(new_join_col)
|
266 |
matched_output_SBM_cols.extend(['standardised_address'])
|
@@ -268,8 +244,6 @@ def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search
|
|
268 |
|
269 |
matched_output_SBM = matched_output_SBM.sort_values(search_df_key_field, ascending=True)
|
270 |
|
271 |
-
#matched_output_SBM.to_csv("matched_output_SBM_out.csv")
|
272 |
-
|
273 |
return matched_output_SBM
|
274 |
|
275 |
def score_based_match(predict_df_search, ref_search, orig_search_df, matching_variables, text_columns, blocker_column, weights, fuzzy_method, score_cut_off, search_df_key_field, standardise, new_join_col, score_cut_off_nnet_street=score_cut_off_nnet_street):
|
@@ -287,8 +261,6 @@ def score_based_match(predict_df_search, ref_search, orig_search_df, matching_va
|
|
287 |
|
288 |
scoresSBM_search_m_j = join_on_pred_ref_details(scoresSBM_search_m, ref_search, predict_df_search)
|
289 |
|
290 |
-
#scoresSBM_search_m_j.to_csv("scoresSBM_search_m_j.csv")
|
291 |
-
|
292 |
# When blocking by street, may to have an increased threshold as this is more prone to making mistakes
|
293 |
if blocker_column[0] == "Street": scoresSBM_search_m_j['full_match_score_based'] = (scoresSBM_search_m_j['score_perc'] >= score_cut_off_nnet_street)
|
294 |
|
@@ -297,15 +269,10 @@ def score_based_match(predict_df_search, ref_search, orig_search_df, matching_va
|
|
297 |
### Reorder some columns
|
298 |
scoresSBM_out, start_columns = rearrange_columns(scoresSBM_search_m_j, new_join_col, search_df_key_field, blocker_column, standardise)
|
299 |
|
300 |
-
#scoresSBM_out.to_csv("scoresSBM_out.csv")
|
301 |
-
|
302 |
matched_output_SBM = create_matched_results_nnet(scoresSBM_out, search_df_key_field, orig_search_df, new_join_col, standardise, ref_search, blocker_column, score_cut_off)
|
303 |
|
304 |
matched_output_SBM_best = matched_output_SBM.sort_values([search_df_key_field, "full_match"], ascending = [True, False]).drop_duplicates(search_df_key_field)
|
305 |
|
306 |
-
#matched_output_SBM.to_csv("matched_output_SBM.csv")
|
307 |
-
#matched_output_SBM_best.to_csv("matched_output_SBM_best.csv")
|
308 |
-
|
309 |
scoresSBM_best = scoresSBM_out[scoresSBM_out[search_df_key_field].isin(matched_output_SBM_best[search_df_key_field])]
|
310 |
|
311 |
return scoresSBM_best, matched_output_SBM_best
|
|
|
93 |
scoresSBM_r = scoresSBM_r.sort_values(by=["level_0","score_perc"], ascending = False)
|
94 |
|
95 |
# Within each search address, remove anything below the max
|
|
|
96 |
scoresSBM_g = scoresSBM_r.reset_index()
|
97 |
|
98 |
# Get maximum score to join on
|
|
|
113 |
|
114 |
scoresSBM_search_m_j = scoresSBM_search_m_j.reindex(sorted(scoresSBM_search_m_j.columns), axis=1)
|
115 |
|
|
|
|
|
116 |
return scoresSBM_search_m_j
|
117 |
|
118 |
def rearrange_columns(scoresSBM_search_m_j, new_join_col, search_df_key_field, blocker_column, standardise):
|
|
|
172 |
|
173 |
scoresSBM_out = scoresSBM_search_m_j[final_cols]
|
174 |
|
|
|
|
|
175 |
return scoresSBM_out, start_columns
|
176 |
|
177 |
def create_matched_results_nnet(scoresSBM_best, search_df_key_field, orig_search_df, new_join_col, standardise, ref_search, blocker_column, score_cut_off):
|
178 |
|
|
|
|
|
179 |
### Make the final 'matched output' file
|
180 |
scoresSBM_best_pred_cols = scoresSBM_best.filter(regex='_pred$').iloc[:,1:-1]
|
181 |
scoresSBM_best["search_orig_address"] = (scoresSBM_best_pred_cols.agg(' '.join, axis=1)).str.strip().str.replace("\s{2,}", " ", regex=True)
|
|
|
192 |
'full_match_score_based', 'Reference file']], on = search_df_key_field, how = "left").\
|
193 |
rename(columns={"full_address":"search_orig_address"})
|
194 |
|
|
|
|
|
195 |
if 'index' not in ref_search.columns:
|
196 |
ref_search['ref_index'] = ref_search.index
|
197 |
|
198 |
matched_output_SBM = matched_output_SBM.merge(ref_search.drop_duplicates("fulladdress")[["ref_index", "fulladdress", "Postcode", "property_number", "prop_number", "flat_number", "apart_number", "block_number", 'unit_number', "room_number", "house_court_name", "ref_address_stand"]], left_on = "address_ref", right_on = "fulladdress", how = "left", suffixes=('_search', '_reference')).rename(columns={"fulladdress":"reference_orig_address", "ref_address_stand":"reference_list_address"})
|
199 |
|
|
|
|
|
200 |
# To replace with number check
|
201 |
|
|
|
202 |
matched_output_SBM = matched_output_SBM.rename(columns={"full_match_score_based":"full_match"})
|
203 |
|
204 |
matched_output_SBM['property_number_match'] = matched_output_SBM['full_match']
|
|
|
205 |
|
206 |
scores_SBM_best_cols = [search_df_key_field, 'full_match_score_based', 'perc_weighted_columns_matched', 'address_pred']#, "reference_mod_address"]
|
207 |
scores_SBM_best_cols.extend(new_join_col)
|
|
|
210 |
|
211 |
matched_output_SBM = matched_output_SBM.merge(matched_output_SBM_b.drop_duplicates(search_df_key_field), on = search_df_key_field, how = "left")
|
212 |
|
|
|
|
|
213 |
from tools.fuzzy_match import create_diag_shortlist
|
214 |
matched_output_SBM = create_diag_shortlist(matched_output_SBM, "search_orig_address", score_cut_off, blocker_column, fuzzy_col='perc_weighted_columns_matched', search_mod_address="address_pred", resolve_tie_breaks=False)
|
215 |
|
|
|
|
|
|
|
216 |
|
217 |
matched_output_SBM['standardised_address'] = standardise
|
218 |
|
219 |
+
matched_output_SBM = matched_output_SBM.rename(columns={"address_pred":"search_mod_address",
|
|
|
|
|
220 |
'perc_weighted_columns_matched':"fuzzy_score"})
|
221 |
|
222 |
matched_output_SBM_cols = [search_df_key_field, 'search_orig_address','reference_orig_address',
|
|
|
237 |
"unit_number_search","unit_number_reference",
|
238 |
'house_court_name_search', 'house_court_name_reference',
|
239 |
"search_mod_address", 'reference_mod_address','Postcode', 'postcode', 'ref_index', 'Reference file']
|
|
|
|
|
|
|
|
|
240 |
|
241 |
matched_output_SBM_cols.extend(new_join_col)
|
242 |
matched_output_SBM_cols.extend(['standardised_address'])
|
|
|
244 |
|
245 |
matched_output_SBM = matched_output_SBM.sort_values(search_df_key_field, ascending=True)
|
246 |
|
|
|
|
|
247 |
return matched_output_SBM
|
248 |
|
249 |
def score_based_match(predict_df_search, ref_search, orig_search_df, matching_variables, text_columns, blocker_column, weights, fuzzy_method, score_cut_off, search_df_key_field, standardise, new_join_col, score_cut_off_nnet_street=score_cut_off_nnet_street):
|
|
|
261 |
|
262 |
scoresSBM_search_m_j = join_on_pred_ref_details(scoresSBM_search_m, ref_search, predict_df_search)
|
263 |
|
|
|
|
|
264 |
# When blocking by street, may to have an increased threshold as this is more prone to making mistakes
|
265 |
if blocker_column[0] == "Street": scoresSBM_search_m_j['full_match_score_based'] = (scoresSBM_search_m_j['score_perc'] >= score_cut_off_nnet_street)
|
266 |
|
|
|
269 |
### Reorder some columns
|
270 |
scoresSBM_out, start_columns = rearrange_columns(scoresSBM_search_m_j, new_join_col, search_df_key_field, blocker_column, standardise)
|
271 |
|
|
|
|
|
272 |
matched_output_SBM = create_matched_results_nnet(scoresSBM_out, search_df_key_field, orig_search_df, new_join_col, standardise, ref_search, blocker_column, score_cut_off)
|
273 |
|
274 |
matched_output_SBM_best = matched_output_SBM.sort_values([search_df_key_field, "full_match"], ascending = [True, False]).drop_duplicates(search_df_key_field)
|
275 |
|
|
|
|
|
|
|
276 |
scoresSBM_best = scoresSBM_out[scoresSBM_out[search_df_key_field].isin(matched_output_SBM_best[search_df_key_field])]
|
277 |
|
278 |
return scoresSBM_best, matched_output_SBM_best
|