|
import re |
|
import datetime |
|
from typing import TypeVar, Dict, List, Tuple |
|
from itertools import compress |
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
import torch |
|
from threading import Thread |
|
from transformers import AutoTokenizer, pipeline, TextIteratorStreamer |
|
|
|
|
|
from gpt4all import GPT4All |
|
from ctransformers import AutoModelForCausalLM |
|
|
|
from dataclasses import asdict, dataclass |
|
|
|
|
|
from langchain import PromptTemplate |
|
from langchain.prompts import PromptTemplate |
|
from langchain.vectorstores import FAISS |
|
from langchain.retrievers import SVMRetriever |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.docstore.document import Document |
|
|
|
|
|
import nltk |
|
nltk.download('wordnet') |
|
from nltk.corpus import stopwords |
|
from nltk.tokenize import RegexpTokenizer |
|
from nltk.stem import WordNetLemmatizer |
|
import keybert |
|
|
|
|
|
|
|
|
|
from span_marker import SpanMarkerModel |
|
|
|
|
|
from gensim.corpora import Dictionary |
|
from gensim.models import TfidfModel, OkapiBM25Model |
|
from gensim.similarities import SparseMatrixSimilarity |
|
|
|
import gradio as gr |
|
|
|
torch_device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print("Running on device:", torch_device) |
|
threads = torch.get_num_threads() |
|
print("CPU threads:", threads) |
|
|
|
PandasDataFrame = TypeVar('pd.core.frame.DataFrame') |
|
|
|
embeddings = None |
|
vectorstore = None |
|
|
|
full_text = "" |
|
|
|
ctrans_llm = [] |
|
|
|
temperature: float = 0.1 |
|
top_k: int = 3 |
|
top_p: float = 1 |
|
repetition_penalty: float = 1.05 |
|
last_n_tokens: int = 64 |
|
max_new_tokens: int = 125 |
|
|
|
reset: bool = False |
|
stream: bool = True |
|
threads: int = threads |
|
batch_size:int = 512 |
|
context_length:int = 2048 |
|
gpu_layers:int = 0 |
|
sample = False |
|
|
|
|
|
hlt_chunk_size = 20 |
|
hlt_strat = [" ", ".", "!", "?", ":", "\n\n", "\n", ","] |
|
hlt_overlap = 0 |
|
|
|
|
|
ner_model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-multinerd") |
|
|
|
|
|
|
|
kw_model = pipeline("feature-extraction", model="sentence-transformers/all-MiniLM-L6-v2") |
|
|
|
|
|
ctrans_llm = [] |
|
|
|
|
|
|
|
|
|
|
|
hf_checkpoint = 'declare-lab/flan-alpaca-large' |
|
|
|
def create_hf_model(model_name): |
|
|
|
from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM |
|
|
|
|
|
|
|
if torch_device == "cuda": |
|
if "flan" in model_name: |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto") |
|
elif "mpt" in model_name: |
|
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto", trust_remote_code=True) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto") |
|
else: |
|
if "flan" in model_name: |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
elif "mpt" in model_name: |
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = 2048) |
|
|
|
return model, tokenizer, torch_device |
|
|
|
model, tokenizer, torch_device = create_hf_model(model_name = hf_checkpoint) |
|
|
|
|
|
|
|
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings): |
|
|
|
print(f"> Total split documents: {len(docs_out)}") |
|
|
|
vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings) |
|
|
|
''' |
|
#with open("vectorstore.pkl", "wb") as f: |
|
#pickle.dump(vectorstore, f) |
|
''' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
global vectorstore |
|
|
|
vectorstore = vectorstore_func |
|
|
|
out_message = "Document processing complete" |
|
|
|
|
|
|
|
|
|
return out_message |
|
|
|
|
|
|
|
def create_prompt_templates(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
CONTENT_PROMPT = PromptTemplate( |
|
template="{page_content}\n\n", |
|
input_variables=["page_content"] |
|
) |
|
|
|
|
|
|
|
|
|
instruction_prompt_template_alpaca_quote = """### Instruction: |
|
Quote directly from the SOURCE below that best answers the QUESTION. Only quote full sentences in the correct order. If you cannot find an answer, start your response with "My best guess is: ". |
|
|
|
CONTENT: {summaries} |
|
|
|
QUESTION: {question} |
|
|
|
Response:""" |
|
|
|
instruction_prompt_template_orca = """ |
|
### System: |
|
You are an AI assistant that follows instruction extremely well. Help as much as you can. |
|
### User: |
|
Answer the QUESTION using information from the following CONTENT. |
|
CONTENT: {summaries} |
|
QUESTION: {question} |
|
|
|
### Response:""" |
|
|
|
|
|
|
|
|
|
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_orca, input_variables=['question', 'summaries']) |
|
|
|
return INSTRUCTION_PROMPT, CONTENT_PROMPT |
|
|
|
def adapt_q_from_chat_history(question, chat_history, extracted_memory, keyword_model=""): |
|
|
|
chat_history_str, chat_history_first_q, chat_history_first_ans, max_chat_length = _get_chat_history(chat_history) |
|
|
|
if chat_history_str: |
|
|
|
extracted_memory = extracted_memory |
|
|
|
|
|
new_question_kworded = str(extracted_memory) + ". " + question |
|
|
|
|
|
else: |
|
new_question_kworded = question |
|
|
|
|
|
|
|
return new_question_kworded |
|
|
|
def create_doc_df(docs_keep_out): |
|
|
|
content=[] |
|
meta=[] |
|
meta_url=[] |
|
page_section=[] |
|
score=[] |
|
|
|
for item in docs_keep_out: |
|
content.append(item[0].page_content) |
|
meta.append(item[0].metadata) |
|
meta_url.append(item[0].metadata['source']) |
|
page_section.append(item[0].metadata['page_section']) |
|
score.append(item[1]) |
|
|
|
|
|
|
|
doc_df = pd.DataFrame(list(zip(content, meta, page_section, meta_url, score)), |
|
columns =['page_content', 'metadata', 'page_section', 'meta_url', 'score']) |
|
|
|
docs_content = doc_df['page_content'].astype(str) |
|
doc_df['full_url'] = "https://" + doc_df['meta_url'] |
|
|
|
return doc_df |
|
|
|
def hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val, out_passages, |
|
vec_score_cut_off, vec_weight, bm25_weight, svm_weight): |
|
|
|
|
|
|
|
|
|
|
|
docs = vectorstore.similarity_search_with_score(new_question_kworded, k=k_val) |
|
|
|
print("Docs from similarity search:") |
|
print(docs) |
|
|
|
|
|
docs_len = [len(x[0].page_content) for x in docs] |
|
docs_scores = [x[1] for x in docs] |
|
|
|
|
|
score_more_limit = pd.Series(docs_scores) < vec_score_cut_off |
|
docs_keep = list(compress(docs, score_more_limit)) |
|
|
|
if docs_keep == []: |
|
docs_keep_as_doc = [] |
|
docs_content = [] |
|
docs_url = [] |
|
return docs_keep_as_doc, docs_content, docs_url |
|
|
|
|
|
length_more_limit = pd.Series(docs_len) >= 100 |
|
docs_keep = list(compress(docs_keep, length_more_limit)) |
|
|
|
if docs_keep == []: |
|
docs_keep_as_doc = [] |
|
docs_content = [] |
|
docs_url = [] |
|
return docs_keep_as_doc, docs_content, docs_url |
|
|
|
docs_keep_as_doc = [x[0] for x in docs_keep] |
|
docs_keep_length = len(docs_keep_as_doc) |
|
|
|
|
|
|
|
if docs_keep_length == 1: |
|
|
|
content=[] |
|
meta_url=[] |
|
score=[] |
|
|
|
for item in docs_keep: |
|
content.append(item[0].page_content) |
|
meta_url.append(item[0].metadata['source']) |
|
score.append(item[1]) |
|
|
|
|
|
|
|
doc_df = pd.DataFrame(list(zip(content, meta_url, score)), |
|
columns =['page_content', 'meta_url', 'score']) |
|
|
|
docs_content = doc_df['page_content'].astype(str) |
|
docs_url = doc_df['meta_url'] |
|
|
|
return docs_keep_as_doc, docs_content, docs_url |
|
|
|
|
|
if out_passages > docs_keep_length: |
|
out_passages = docs_keep_length |
|
k_val = docs_keep_length |
|
|
|
vec_rank = [*range(1, docs_keep_length+1)] |
|
vec_score = [(docs_keep_length/x)*vec_weight for x in vec_rank] |
|
|
|
|
|
|
|
content_keep=[] |
|
for item in docs_keep: |
|
content_keep.append(item[0].page_content) |
|
|
|
corpus = corpus = [doc.lower().split() for doc in content_keep] |
|
dictionary = Dictionary(corpus) |
|
bm25_model = OkapiBM25Model(dictionary=dictionary) |
|
bm25_corpus = bm25_model[list(map(dictionary.doc2bow, corpus))] |
|
bm25_index = SparseMatrixSimilarity(bm25_corpus, num_docs=len(corpus), num_terms=len(dictionary), |
|
normalize_queries=False, normalize_documents=False) |
|
query = new_question_kworded.lower().split() |
|
tfidf_model = TfidfModel(dictionary=dictionary, smartirs='bnn') |
|
tfidf_query = tfidf_model[dictionary.doc2bow(query)] |
|
similarities = np.array(bm25_index[tfidf_query]) |
|
|
|
temp = similarities.argsort() |
|
ranks = np.arange(len(similarities))[temp.argsort()][::-1] |
|
|
|
|
|
pairs = list(zip(ranks, docs_keep_as_doc)) |
|
|
|
pairs.sort() |
|
|
|
bm25_result = [value for ranks, value in pairs] |
|
|
|
bm25_rank=[] |
|
bm25_score = [] |
|
|
|
for vec_item in docs_keep: |
|
x = 0 |
|
for bm25_item in bm25_result: |
|
x = x + 1 |
|
if bm25_item.page_content == vec_item[0].page_content: |
|
bm25_rank.append(x) |
|
bm25_score.append((docs_keep_length/x)*bm25_weight) |
|
|
|
|
|
svm_retriever = SVMRetriever.from_texts(content_keep, embeddings, k = k_val) |
|
svm_result = svm_retriever.get_relevant_documents(new_question_kworded) |
|
|
|
|
|
svm_rank=[] |
|
svm_score = [] |
|
|
|
for vec_item in docs_keep: |
|
x = 0 |
|
for svm_item in svm_result: |
|
x = x + 1 |
|
if svm_item.page_content == vec_item[0].page_content: |
|
svm_rank.append(x) |
|
svm_score.append((docs_keep_length/x)*svm_weight) |
|
|
|
|
|
|
|
final_score = [a + b + c for a, b, c in zip(vec_score, bm25_score, svm_score)] |
|
final_rank = [sorted(final_score, reverse=True).index(x)+1 for x in final_score] |
|
|
|
final_rank = list(pd.Series(final_rank).rank(method='first')) |
|
|
|
|
|
|
|
|
|
best_rank_index_pos = [] |
|
|
|
for x in range(1,out_passages+1): |
|
try: |
|
best_rank_index_pos.append(final_rank.index(x)) |
|
except IndexError: |
|
pass |
|
|
|
|
|
|
|
best_rank_pos_series = pd.Series(best_rank_index_pos) |
|
|
|
|
|
docs_keep_out = [docs_keep[i] for i in best_rank_index_pos] |
|
|
|
|
|
docs_keep_as_doc = [x[0] for x in docs_keep_out] |
|
|
|
|
|
doc_df = create_doc_df(docs_keep_out) |
|
|
|
return docs_keep_as_doc, doc_df, docs_keep_out |
|
|
|
def get_expanded_passages(vectorstore, docs, width): |
|
""" |
|
Extracts expanded passages based on given documents and a width for context. |
|
|
|
Parameters: |
|
- vectorstore: The primary data source. |
|
- docs: List of documents to be expanded. |
|
- width: Number of documents to expand around a given document for context. |
|
|
|
Returns: |
|
- expanded_docs: List of expanded Document objects. |
|
- doc_df: DataFrame representation of expanded_docs. |
|
""" |
|
|
|
def get_docs_from_vstore(vectorstore): |
|
vector = vectorstore.docstore._dict |
|
return list(vector.items()) |
|
|
|
def extract_details(docs_list): |
|
docs_list_out = [tup[1] for tup in docs_list] |
|
content = [doc.page_content for doc in docs_list_out] |
|
meta = [doc.metadata for doc in docs_list_out] |
|
return ''.join(content), meta[0], meta[-1] |
|
|
|
def get_parent_content_and_meta(vstore_docs, width, target): |
|
target_range = range(max(0, target - width), min(len(vstore_docs), target + width + 1)) |
|
parent_vstore_out = [vstore_docs[i] for i in target_range] |
|
|
|
content_str_out, meta_first_out, meta_last_out = [], [], [] |
|
for _ in parent_vstore_out: |
|
content_str, meta_first, meta_last = extract_details(parent_vstore_out) |
|
content_str_out.append(content_str) |
|
meta_first_out.append(meta_first) |
|
meta_last_out.append(meta_last) |
|
return content_str_out, meta_first_out, meta_last_out |
|
|
|
def merge_dicts_except_source(d1, d2): |
|
merged = {} |
|
for key in d1: |
|
if key != "source": |
|
merged[key] = str(d1[key]) + " to " + str(d2[key]) |
|
else: |
|
merged[key] = d1[key] |
|
return merged |
|
|
|
def merge_two_lists_of_dicts(list1, list2): |
|
return [merge_dicts_except_source(d1, d2) for d1, d2 in zip(list1, list2)] |
|
|
|
vstore_docs = get_docs_from_vstore(vectorstore) |
|
parent_vstore_meta_section = [doc.metadata['page_section'] for _, doc in vstore_docs] |
|
|
|
|
|
|
|
expanded_docs = [] |
|
for doc, score in docs: |
|
search_section = doc.metadata['page_section'] |
|
search_index = parent_vstore_meta_section.index(search_section) if search_section in parent_vstore_meta_section else -1 |
|
|
|
content_str, meta_first, meta_last = get_parent_content_and_meta(vstore_docs, width, search_index) |
|
|
|
|
|
|
|
|
|
|
|
meta_full = merge_two_lists_of_dicts(meta_first, meta_last) |
|
|
|
|
|
|
|
expanded_doc = (Document(page_content=content_str[0], metadata=meta_full[0]), score) |
|
expanded_docs.append(expanded_doc) |
|
|
|
doc_df = create_doc_df(expanded_docs) |
|
|
|
return expanded_docs, doc_df |
|
|
|
def create_final_prompt(inputs: Dict[str, str], instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings): |
|
|
|
question = inputs["question"] |
|
chat_history = inputs["chat_history"] |
|
|
|
|
|
new_question_kworded = adapt_q_from_chat_history(question, chat_history, extracted_memory) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs_keep_as_doc, doc_df, docs_keep_out = hybrid_retrieval(new_question_kworded, vectorstore, embeddings, k_val = 5, out_passages = 2, |
|
vec_score_cut_off = 1, vec_weight = 1, bm25_weight = 1, svm_weight = 1) |
|
|
|
|
|
|
|
docs_keep_as_doc, doc_df = get_expanded_passages(vectorstore, docs_keep_out, width=1) |
|
|
|
if docs_keep_as_doc == []: |
|
{"answer": "I'm sorry, I couldn't find a relevant answer to this question.", "sources":"I'm sorry, I couldn't find a relevant source for this question."} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
doc_df['meta_clean'] = [f"<b>{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}</b>" for d in doc_df['metadata']] |
|
doc_df['content_meta'] = doc_df['meta_clean'].astype(str) + ".<br><br>" + doc_df['page_content'].astype(str) |
|
|
|
modified_page_content = [f" SOURCE {i+1} - {word}" for i, word in enumerate(doc_df['page_content'])] |
|
docs_content_string = ''.join(modified_page_content) |
|
|
|
|
|
sources_docs_content_string = '<br><br>'.join(doc_df['content_meta']) |
|
|
|
|
|
|
|
|
|
instruction_prompt_out = instruction_prompt.format(question=new_question_kworded, summaries=docs_content_string) |
|
|
|
|
|
|
|
|
|
return instruction_prompt_out, sources_docs_content_string, new_question_kworded |
|
|
|
def get_history_sources_final_input_prompt(user_input, history, extracted_memory, vectorstore, embeddings): |
|
|
|
|
|
|
|
|
|
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") |
|
print("User input: " + user_input) |
|
|
|
history = history or [] |
|
|
|
|
|
|
|
|
|
instruction_prompt, content_prompt = create_prompt_templates() |
|
instruction_prompt_out, docs_content_string, new_question_kworded =\ |
|
create_final_prompt({"question": user_input, "chat_history": history}, |
|
instruction_prompt, content_prompt, extracted_memory, vectorstore, embeddings) |
|
|
|
|
|
history.append(user_input) |
|
|
|
print("Output history is:") |
|
print(history) |
|
|
|
|
|
|
|
|
|
return history, docs_content_string, instruction_prompt_out |
|
|
|
def highlight_found_text_single(search_text:str, full_text:str, hlt_chunk_size:int=hlt_chunk_size, hlt_strat:List=hlt_strat, hlt_overlap:int=hlt_overlap) -> str: |
|
""" |
|
Highlights occurrences of search_text within full_text. |
|
|
|
Parameters: |
|
- search_text (str): The text to be searched for within full_text. |
|
- full_text (str): The text within which search_text occurrences will be highlighted. |
|
|
|
Returns: |
|
- str: A string with occurrences of search_text highlighted. |
|
|
|
Example: |
|
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.") |
|
'Hello, <mark style="color:black;">world</mark>! This is a test. Another world awaits.' |
|
""" |
|
|
|
def extract_text_from_input(text,i=0): |
|
if isinstance(text, str): |
|
return text.replace(" ", " ").strip() |
|
elif isinstance(text, list): |
|
return text[i][0].replace(" ", " ").strip() |
|
else: |
|
return "" |
|
|
|
def extract_search_text_from_input(text): |
|
if isinstance(text, str): |
|
return text.replace(" ", " ").strip() |
|
elif isinstance(text, list): |
|
return text[-1][1].replace(" ", " ").strip() |
|
else: |
|
return "" |
|
|
|
full_text = extract_text_from_input(full_text) |
|
search_text = extract_search_text_from_input(search_text) |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=hlt_chunk_size, |
|
separators=hlt_strat, |
|
chunk_overlap=hlt_overlap, |
|
) |
|
sections = text_splitter.split_text(search_text) |
|
|
|
|
|
|
|
found_positions = {} |
|
for x in sections: |
|
text_start_pos = full_text.find(x) |
|
|
|
if text_start_pos != -1: |
|
found_positions[text_start_pos] = text_start_pos + len(x) |
|
|
|
|
|
sorted_starts = sorted(found_positions.keys()) |
|
combined_positions = [] |
|
if sorted_starts: |
|
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]] |
|
for start in sorted_starts[1:]: |
|
if start <= (current_end + 1): |
|
current_end = max(current_end, found_positions[start]) |
|
else: |
|
combined_positions.append((current_start, current_end)) |
|
current_start, current_end = start, found_positions[start] |
|
combined_positions.append((current_start, current_end)) |
|
|
|
|
|
pos_tokens = [] |
|
prev_end = 0 |
|
for start, end in combined_positions: |
|
pos_tokens.append(full_text[prev_end:start]) |
|
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>') |
|
prev_end = end |
|
pos_tokens.append(full_text[prev_end:]) |
|
|
|
return "".join(pos_tokens) |
|
|
|
def highlight_found_text(search_text: str, full_text: str, hlt_chunk_size:int=hlt_chunk_size, hlt_strat:List=hlt_strat, hlt_overlap:int=hlt_overlap) -> str: |
|
""" |
|
Highlights occurrences of search_text within full_text. |
|
|
|
Parameters: |
|
- search_text (str): The text to be searched for within full_text. |
|
- full_text (str): The text within which search_text occurrences will be highlighted. |
|
|
|
Returns: |
|
- str: A string with occurrences of search_text highlighted. |
|
|
|
Example: |
|
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.") |
|
'Hello, <mark style="color:black;">world</mark>! This is a test. Another <mark style="color:black;">world</mark> awaits.' |
|
""" |
|
|
|
def extract_text_from_input(text, i=0): |
|
if isinstance(text, str): |
|
return text.replace(" ", " ").strip() |
|
elif isinstance(text, list): |
|
return text[i][0].replace(" ", " ").strip() |
|
else: |
|
return "" |
|
|
|
def extract_search_text_from_input(text): |
|
if isinstance(text, str): |
|
return text.replace(" ", " ").strip() |
|
elif isinstance(text, list): |
|
return text[-1][1].replace(" ", " ").strip() |
|
else: |
|
return "" |
|
|
|
full_text = extract_text_from_input(full_text) |
|
search_text = extract_search_text_from_input(search_text) |
|
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=hlt_chunk_size, |
|
separators=hlt_strat, |
|
chunk_overlap=hlt_overlap, |
|
) |
|
sections = text_splitter.split_text(search_text) |
|
|
|
found_positions = {} |
|
for x in sections: |
|
text_start_pos = 0 |
|
while text_start_pos != -1: |
|
text_start_pos = full_text.find(x, text_start_pos) |
|
if text_start_pos != -1: |
|
found_positions[text_start_pos] = text_start_pos + len(x) |
|
text_start_pos += 1 |
|
|
|
|
|
sorted_starts = sorted(found_positions.keys()) |
|
combined_positions = [] |
|
if sorted_starts: |
|
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]] |
|
for start in sorted_starts[1:]: |
|
if start <= (current_end + 10): |
|
current_end = max(current_end, found_positions[start]) |
|
else: |
|
combined_positions.append((current_start, current_end)) |
|
current_start, current_end = start, found_positions[start] |
|
combined_positions.append((current_start, current_end)) |
|
|
|
|
|
pos_tokens = [] |
|
prev_end = 0 |
|
for start, end in combined_positions: |
|
pos_tokens.append(full_text[prev_end:start]) |
|
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>') |
|
prev_end = end |
|
pos_tokens.append(full_text[prev_end:]) |
|
|
|
return "".join(pos_tokens) |
|
|
|
|
|
def produce_streaming_answer_chatbot_gpt4all(history, full_prompt): |
|
|
|
print("The question is: ") |
|
print(full_prompt) |
|
|
|
|
|
history[-1][1] = "" |
|
for new_text in gpt4all_model.generate(full_prompt, max_tokens=2000, streaming=True): |
|
if new_text == None: new_text = "" |
|
history[-1][1] += new_text |
|
yield history |
|
|
|
def produce_streaming_answer_chatbot_hf(history, full_prompt): |
|
|
|
|
|
|
|
|
|
|
|
model_inputs = tokenizer(text=full_prompt, return_tensors="pt").to(torch_device) |
|
|
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=60., skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=sample, |
|
repetition_penalty=1.3, |
|
top_p=top_p, |
|
temperature=temperature, |
|
top_k=top_k |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
|
|
import time |
|
start = time.time() |
|
NUM_TOKENS=0 |
|
print('-'*4+'Start Generation'+'-'*4) |
|
|
|
history[-1][1] = "" |
|
for new_text in streamer: |
|
if new_text == None: new_text = "" |
|
history[-1][1] += new_text |
|
NUM_TOKENS+=1 |
|
yield history |
|
|
|
time_generate = time.time() - start |
|
print('\n') |
|
print('-'*4+'End Generation'+'-'*4) |
|
print(f'Num of generated tokens: {NUM_TOKENS}') |
|
print(f'Time for complete generation: {time_generate}s') |
|
print(f'Tokens per secound: {NUM_TOKENS/time_generate}') |
|
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms') |
|
|
|
def produce_streaming_answer_chatbot_ctrans(history, full_prompt): |
|
|
|
print("The question is: ") |
|
print(full_prompt) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = GenerationConfig(reset=True) |
|
history[-1][1] = "" |
|
for new_text in ctrans_generate(prompt=full_prompt, config=config): |
|
if new_text == None: new_text = "" |
|
history[-1][1] += new_text |
|
yield history |
|
|
|
@dataclass |
|
class GenerationConfig: |
|
temperature: float = temperature |
|
top_k: int = top_k |
|
top_p: float = top_p |
|
repetition_penalty: float = repetition_penalty |
|
last_n_tokens: int = last_n_tokens |
|
max_new_tokens: int = max_new_tokens |
|
|
|
reset: bool = reset |
|
stream: bool = stream |
|
threads: int = threads |
|
batch_size:int = batch_size |
|
|
|
|
|
|
|
|
|
def ctrans_generate( |
|
prompt: str, |
|
llm=ctrans_llm, |
|
config: GenerationConfig = GenerationConfig(), |
|
): |
|
"""Run model inference, will return a Generator if streaming is true.""" |
|
|
|
return llm( |
|
prompt, |
|
**asdict(config), |
|
) |
|
|
|
def turn_off_interactivity(user_message, history): |
|
return gr.update(value="", interactive=False), history + [[user_message, None]] |
|
|
|
|
|
|
|
def clear_chat(chat_history_state, sources, chat_message, current_topic): |
|
chat_history_state = [] |
|
sources = '' |
|
chat_message = '' |
|
current_topic = '' |
|
|
|
return chat_history_state, sources, chat_message, current_topic |
|
|
|
def _get_chat_history(chat_history: List[Tuple[str, str]], max_chat_length:int = 20): |
|
|
|
if not chat_history: |
|
chat_history = [] |
|
|
|
if len(chat_history) > max_chat_length: |
|
chat_history = chat_history[-max_chat_length:] |
|
|
|
|
|
|
|
first_q = "" |
|
first_ans = "" |
|
for human_s, ai_s in chat_history: |
|
first_q = human_s |
|
first_ans = ai_s |
|
|
|
|
|
break |
|
|
|
conversation = "" |
|
for human_s, ai_s in chat_history: |
|
human = f"Human: " + human_s |
|
ai = f"Assistant: " + ai_s |
|
conversation += "\n" + "\n".join([human, ai]) |
|
|
|
return conversation, first_q, first_ans, max_chat_length |
|
|
|
def add_inputs_answer_to_history(user_message, history, current_topic): |
|
|
|
|
|
|
|
chat_history_str, chat_history_first_q, chat_history_first_ans, max_chat_length = _get_chat_history(history) |
|
|
|
|
|
|
|
if (len(history) == 1) | (len(history) > max_chat_length): |
|
|
|
|
|
|
|
|
|
first_q_and_first_ans = str(chat_history_first_q) + " " + str(chat_history_first_ans) |
|
|
|
keywords = keybert_keywords(first_q_and_first_ans, n = 8, kw_model=kw_model) |
|
|
|
|
|
|
|
ordered_tokens = set() |
|
result = [] |
|
for word in keywords: |
|
if word not in ordered_tokens: |
|
ordered_tokens.add(word) |
|
result.append(word) |
|
|
|
extracted_memory = ' '.join(result) |
|
|
|
else: extracted_memory=current_topic |
|
|
|
print("Extracted memory is:") |
|
print(extracted_memory) |
|
|
|
|
|
return history, extracted_memory |
|
|
|
def remove_q_stopwords(question): |
|
|
|
text = question.lower() |
|
|
|
|
|
text = re.sub('[0-9]', '', text) |
|
|
|
tokenizer = RegexpTokenizer(r'\w+') |
|
text_tokens = tokenizer.tokenize(text) |
|
|
|
tokens_without_sw = [word for word in text_tokens if not word in stopwords] |
|
|
|
|
|
ordered_tokens = set() |
|
result = [] |
|
for word in tokens_without_sw: |
|
if word not in ordered_tokens: |
|
ordered_tokens.add(word) |
|
result.append(word) |
|
|
|
|
|
|
|
new_question_keywords = ' '.join(result) |
|
return new_question_keywords |
|
|
|
def remove_q_ner_extractor(question): |
|
|
|
predict_out = ner_model.predict(question) |
|
|
|
|
|
|
|
predict_tokens = [' '.join(v for k, v in d.items() if k == 'span') for d in predict_out] |
|
|
|
|
|
ordered_tokens = set() |
|
result = [] |
|
for word in predict_tokens: |
|
if word not in ordered_tokens: |
|
ordered_tokens.add(word) |
|
result.append(word) |
|
|
|
|
|
|
|
new_question_keywords = ' '.join(result).lower() |
|
return new_question_keywords |
|
|
|
def apply_lemmatize(text, wnl=WordNetLemmatizer()): |
|
|
|
def prep_for_lemma(text): |
|
|
|
|
|
text = re.sub('[0-9]', '', text) |
|
print(text) |
|
|
|
tokenizer = RegexpTokenizer(r'\w+') |
|
text_tokens = tokenizer.tokenize(text) |
|
|
|
|
|
return text_tokens |
|
|
|
tokens = prep_for_lemma(text) |
|
|
|
def lem_word(word): |
|
|
|
if len(word) > 3: out_word = wnl.lemmatize(word) |
|
else: out_word = word |
|
|
|
return out_word |
|
|
|
return [lem_word(token) for token in tokens] |
|
|
|
def keybert_keywords(text, n, kw_model): |
|
tokens_lemma = apply_lemmatize(text) |
|
lemmatised_text = ' '.join(tokens_lemma) |
|
|
|
keywords_text = keybert.KeyBERT(model=kw_model).extract_keywords(lemmatised_text, stop_words='english', top_n=n, |
|
keyphrase_ngram_range=(1, 1)) |
|
keywords_list = [item[0] for item in keywords_text] |
|
|
|
return keywords_list |
|
|
|
|