|
from models import SynthesizerTrn |
|
from scipy.io.wavfile import write |
|
from khmer_phonemizer import phonemize_single |
|
import utils |
|
import commons |
|
import torch |
|
|
|
_pad = '_' |
|
_punctuation = '. ' |
|
_letters_ipa = 'acefhijklmnoprstuwzĕŋŏŭɑɓɔɗəɛɡɨɲʋʔʰː' |
|
|
|
|
|
symbols = [_pad] + list(_punctuation) + list(_letters_ipa) |
|
|
|
|
|
SPACE_ID = symbols.index(" ") |
|
|
|
_symbol_to_id = {s: i for i, s in enumerate(symbols)} |
|
|
|
def text_to_sequence(text): |
|
sequence = [] |
|
for symbol in text: |
|
symbol_id = _symbol_to_id[symbol] |
|
sequence += [symbol_id] |
|
return sequence |
|
|
|
|
|
def get_text(text, hps): |
|
text_norm = text_to_sequence(text) |
|
|
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
|
|
hps = utils.get_hparams_from_file("config.json") |
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model |
|
) |
|
|
|
_ = net_g.eval() |
|
_ = utils.load_checkpoint("G_22000.pth", net_g, None) |
|
|
|
text = " ".join(phonemize_single("នឹកណាស់") + ["."]) |
|
stn_tst = get_text(text, hps) |
|
|
|
with torch.no_grad(): |
|
x_tst = stn_tst.unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) |
|
audio = ( |
|
net_g.infer( |
|
x_tst, x_tst_lengths, noise_scale=0.667, noise_scale_w=0.8, length_scale=1 |
|
)[0][0, 0] |
|
.data.cpu() |
|
.float() |
|
.numpy() |
|
) |
|
write("audio.wav", rate=hps.data.sampling_rate, data=audio) |
|
|