KLEA / app.py
seanghay's picture
Update app.py
ee9699f
raw
history blame
2.58 kB
# -*- coding: utf-8 -*-
import gradio as gr
from models import SynthesizerTrn
from khmer_phonemizer import phonemize_single
import utils
import commons
import torch
import khmernormalizer
_pad = "_"
_punctuation = ". "
_letters_ipa = "acefhijklmnoprstuwzĕŋŏŭɑɓɔɗəɛɑɨɲʋʔʰː"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters_ipa)
# Special symbol ids
SPACE_ID = symbols.index(" ")
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
def text_to_sequence(text):
sequence = []
for symbol in text:
symbol_id = _symbol_to_id[symbol]
sequence += [symbol_id]
return sequence
def get_text(text, hps):
text_norm = text_to_sequence(text)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
hps = utils.get_hparams_from_file("config.json")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model
)
_ = net_g.eval()
_ = utils.load_checkpoint("G_60000.pth", net_g, None)
def generate_voice(text):
text = khmernormalizer.normalize(text)
text = " ".join(phonemize_single(text) + ["."])
stn_tst = get_text(text, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
noise_scale=0.667,
noise_scale_w=0.8,
length_scale=1,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
return (hps.data.sampling_rate, audio)
with gr.Blocks(
title="Khmer Word to Speech",
theme=gr.themes.Default(
font=[gr.themes.GoogleFont("Noto Sans Khmer"), "Arial", "sans-serif"]
),
) as blocks:
gr.Markdown("# Khmer Word to Speech")
input_text = gr.Text(label="αž–αžΆαž€αŸ’αž™αžαŸ’αž›αžΈ", lines=1)
examples = gr.Examples(examples=["αž˜αž“αž»αžŸαŸ’αžŸαž‡αžΆαžαž·", "αž—αŸ’αž“αŸ†αž–αŸ’αžšαŸ‡"], inputs=[input_text])
run_button = gr.Button(value="αž”αž„αŸ’αž€αžΎαž")
out_audio = gr.Audio(
label="αžŸαŸ†αž‘αŸαž„αžŠαŸ‚αž›αž”αžΆαž“αž”αž„αŸ’αž€αžΎαž",
type="numpy",
)
inputs = [input_text]
outputs = [out_audio]
run_button.click(
fn=generate_voice,
inputs=inputs,
outputs=outputs,
queue=True,
)
blocks.queue(concurrency_count=1).launch(debug=True)