Spaces:
Runtime error
Runtime error
hritiksdlccorp
commited on
Commit
•
c954a8f
1
Parent(s):
6b545e7
Upload 4 files
Browse files- .gitattributes +5 -0
- README.md +8 -7
- app.py +410 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/IMG_0860.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
examples/winter_kiking.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
examples/winter_hiking.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
examples/santa.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
examples/mona_diner.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Image to Music v2
|
3 |
+
emoji: 🎺
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.16.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
short_description: Get a music sample inspired by the mood of an image
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import json
|
4 |
+
import re
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
+
from gradio_client import Client
|
8 |
+
|
9 |
+
MAX_SEED = np.iinfo(np.int32).max
|
10 |
+
|
11 |
+
def check_api(model_name):
|
12 |
+
if model_name == "MAGNet":
|
13 |
+
try :
|
14 |
+
client = Client("https://fffiloni-magnet.hf.space/")
|
15 |
+
return "api ready"
|
16 |
+
except :
|
17 |
+
return "api not ready yet"
|
18 |
+
elif model_name == "AudioLDM-2":
|
19 |
+
try :
|
20 |
+
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
|
21 |
+
return "api ready"
|
22 |
+
except :
|
23 |
+
return "api not ready yet"
|
24 |
+
elif model_name == "Riffusion":
|
25 |
+
try :
|
26 |
+
client = Client("https://fffiloni-spectrogram-to-music.hf.space/")
|
27 |
+
return "api ready"
|
28 |
+
except :
|
29 |
+
return "api not ready yet"
|
30 |
+
elif model_name == "Mustango":
|
31 |
+
try :
|
32 |
+
client = Client("https://declare-lab-mustango.hf.space/")
|
33 |
+
return "api ready"
|
34 |
+
except :
|
35 |
+
return "api not ready yet"
|
36 |
+
elif model_name == "MusicGen":
|
37 |
+
try :
|
38 |
+
client = Client("https://facebook-musicgen.hf.space/")
|
39 |
+
return "api ready"
|
40 |
+
except :
|
41 |
+
return "api not ready yet"
|
42 |
+
|
43 |
+
from moviepy.editor import VideoFileClip
|
44 |
+
from moviepy.audio.AudioClip import AudioClip
|
45 |
+
|
46 |
+
def extract_audio(video_in):
|
47 |
+
input_video = video_in
|
48 |
+
output_audio = 'audio.wav'
|
49 |
+
|
50 |
+
# Open the video file and extract the audio
|
51 |
+
video_clip = VideoFileClip(input_video)
|
52 |
+
audio_clip = video_clip.audio
|
53 |
+
|
54 |
+
# Save the audio as a .wav file
|
55 |
+
audio_clip.write_audiofile(output_audio, fps=44100) # Use 44100 Hz as the sample rate for .wav files
|
56 |
+
print("Audio extraction complete.")
|
57 |
+
|
58 |
+
return 'audio.wav'
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
def get_caption(image_in):
|
63 |
+
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")
|
64 |
+
kosmos2_result = kosmos2_client.predict(
|
65 |
+
image_in, # str (filepath or URL to image) in 'Test Image' Image component
|
66 |
+
"Detailed", # str in 'Description Type' Radio component
|
67 |
+
fn_index=4
|
68 |
+
)
|
69 |
+
|
70 |
+
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
|
71 |
+
|
72 |
+
with open(kosmos2_result[1], 'r') as f:
|
73 |
+
data = json.load(f)
|
74 |
+
|
75 |
+
reconstructed_sentence = []
|
76 |
+
for sublist in data:
|
77 |
+
reconstructed_sentence.append(sublist[0])
|
78 |
+
|
79 |
+
full_sentence = ' '.join(reconstructed_sentence)
|
80 |
+
#print(full_sentence)
|
81 |
+
|
82 |
+
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
|
83 |
+
pattern = r'^Describe this image in detail:\s*(.*)$'
|
84 |
+
# Apply the regex pattern to extract the description text.
|
85 |
+
match = re.search(pattern, full_sentence)
|
86 |
+
if match:
|
87 |
+
description = match.group(1)
|
88 |
+
print(description)
|
89 |
+
else:
|
90 |
+
print("Unable to locate valid description.")
|
91 |
+
|
92 |
+
# Find the last occurrence of "."
|
93 |
+
#last_period_index = full_sentence.rfind('.')
|
94 |
+
|
95 |
+
# Truncate the string up to the last period
|
96 |
+
#truncated_caption = full_sentence[:last_period_index + 1]
|
97 |
+
|
98 |
+
# print(truncated_caption)
|
99 |
+
#print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
|
100 |
+
|
101 |
+
return description
|
102 |
+
|
103 |
+
def get_caption_from_MD(image_in):
|
104 |
+
client = Client("https://vikhyatk-moondream1.hf.space/")
|
105 |
+
result = client.predict(
|
106 |
+
image_in, # filepath in 'image' Image component
|
107 |
+
"Describe precisely the image.", # str in 'Question' Textbox component
|
108 |
+
api_name="/answer_question"
|
109 |
+
)
|
110 |
+
print(result)
|
111 |
+
return result
|
112 |
+
|
113 |
+
def get_magnet(prompt):
|
114 |
+
|
115 |
+
client = Client("https://fffiloni-magnet.hf.space/")
|
116 |
+
result = client.predict(
|
117 |
+
"facebook/magnet-small-10secs", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component
|
118 |
+
"", # str in 'Model Path (custom models)' Textbox component
|
119 |
+
prompt, # str in 'Input Text' Textbox component
|
120 |
+
3, # float in 'Temperature' Number component
|
121 |
+
0.9, # float in 'Top-p' Number component
|
122 |
+
10, # float in 'Max CFG coefficient' Number component
|
123 |
+
1, # float in 'Min CFG coefficient' Number component
|
124 |
+
20, # float in 'Decoding Steps (stage 1)' Number component
|
125 |
+
10, # float in 'Decoding Steps (stage 2)' Number component
|
126 |
+
10, # float in 'Decoding Steps (stage 3)' Number component
|
127 |
+
10, # float in 'Decoding Steps (stage 4)' Number component
|
128 |
+
"prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component
|
129 |
+
api_name="/predict_full"
|
130 |
+
)
|
131 |
+
print(result)
|
132 |
+
return result[1]
|
133 |
+
|
134 |
+
def get_audioldm(prompt):
|
135 |
+
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
|
136 |
+
seed = random.randint(0, MAX_SEED)
|
137 |
+
result = client.predict(
|
138 |
+
prompt, # str in 'Input text' Textbox component
|
139 |
+
"Low quality.", # str in 'Negative prompt' Textbox component
|
140 |
+
10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
|
141 |
+
6.5, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
|
142 |
+
seed, # int | float in 'Seed' Number component
|
143 |
+
3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
|
144 |
+
fn_index=1
|
145 |
+
)
|
146 |
+
print(result)
|
147 |
+
audio_result = extract_audio(result)
|
148 |
+
return audio_result
|
149 |
+
|
150 |
+
def get_riffusion(prompt):
|
151 |
+
client = Client("https://fffiloni-spectrogram-to-music.hf.space/")
|
152 |
+
result = client.predict(
|
153 |
+
prompt, # str in 'Musical prompt' Textbox component
|
154 |
+
"", # str in 'Negative prompt' Textbox component
|
155 |
+
None, # filepath in 'parameter_4' Audio component
|
156 |
+
10, # float (numeric value between 5 and 10) in 'Duration in seconds' Slider component
|
157 |
+
api_name="/predict"
|
158 |
+
)
|
159 |
+
print(result)
|
160 |
+
return result[1]
|
161 |
+
|
162 |
+
def get_mustango(prompt):
|
163 |
+
client = Client("https://declare-lab-mustango.hf.space/")
|
164 |
+
result = client.predict(
|
165 |
+
prompt, # str in 'Prompt' Textbox component
|
166 |
+
200, # float (numeric value between 100 and 200) in 'Steps' Slider component
|
167 |
+
6, # float (numeric value between 1 and 10) in 'Guidance Scale' Slider component
|
168 |
+
api_name="/predict"
|
169 |
+
)
|
170 |
+
print(result)
|
171 |
+
return result
|
172 |
+
|
173 |
+
def get_musicgen(prompt):
|
174 |
+
client = Client("https://facebook-musicgen.hf.space/")
|
175 |
+
result = client.predict(
|
176 |
+
prompt, # str in 'Describe your music' Textbox component
|
177 |
+
None, # str (filepath or URL to file) in 'File' Audio component
|
178 |
+
fn_index=0
|
179 |
+
)
|
180 |
+
print(result)
|
181 |
+
return result[1]
|
182 |
+
|
183 |
+
import re
|
184 |
+
import torch
|
185 |
+
from transformers import pipeline
|
186 |
+
|
187 |
+
zephyr_model = "HuggingFaceH4/zephyr-7b-beta"
|
188 |
+
mixtral_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
189 |
+
|
190 |
+
pipe = pipeline("text-generation", model=zephyr_model, torch_dtype=torch.bfloat16, device_map="auto")
|
191 |
+
|
192 |
+
standard_sys = f"""
|
193 |
+
You are a musician AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users.
|
194 |
+
In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model.
|
195 |
+
|
196 |
+
For example, if a user says, "a picture of a man in a black suit and tie riding a black dragon", provide immediately a musical prompt corresponding to the image description.
|
197 |
+
Immediately STOP after that. It should be EXACTLY in this format:
|
198 |
+
"A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle"
|
199 |
+
"""
|
200 |
+
|
201 |
+
mustango_sys = f"""
|
202 |
+
You are a musician AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users.
|
203 |
+
In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model, you MUST include chords progression.
|
204 |
+
|
205 |
+
For example, if a user says, "a painting of three old women having tea party", provide immediately a musical prompt corresponding to the image description.
|
206 |
+
Immediately STOP after that. It should be EXACTLY in this format:
|
207 |
+
"The song is an instrumental. The song is in medium tempo with a classical guitar playing a lilting melody in accompaniment style. The song is emotional and romantic. The song is a romantic instrumental song. The chord sequence is Gm, F6, Ebm. The time signature is 4/4. This song is in Adagio. The key of this song is G minor."
|
208 |
+
"""
|
209 |
+
|
210 |
+
@spaces.GPU(enable_queue=True)
|
211 |
+
def get_musical_prompt(user_prompt, chosen_model):
|
212 |
+
|
213 |
+
"""
|
214 |
+
if chosen_model == "Mustango" :
|
215 |
+
agent_maker_sys = standard_sys
|
216 |
+
else :
|
217 |
+
agent_maker_sys = standard_sys
|
218 |
+
"""
|
219 |
+
agent_maker_sys = standard_sys
|
220 |
+
|
221 |
+
instruction = f"""
|
222 |
+
<|system|>
|
223 |
+
{agent_maker_sys}</s>
|
224 |
+
<|user|>
|
225 |
+
"""
|
226 |
+
|
227 |
+
prompt = f"{instruction.strip()}\n{user_prompt}</s>"
|
228 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
229 |
+
pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>'
|
230 |
+
cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL)
|
231 |
+
|
232 |
+
print(f"SUGGESTED Musical prompt: {cleaned_text}")
|
233 |
+
return cleaned_text.lstrip("\n")
|
234 |
+
|
235 |
+
def infer(image_in, chosen_model, api_status):
|
236 |
+
if image_in == None :
|
237 |
+
raise gr.Error("Please provide an image input")
|
238 |
+
|
239 |
+
if chosen_model == [] :
|
240 |
+
raise gr.Error("Please pick a model")
|
241 |
+
|
242 |
+
if api_status == "api not ready yet" :
|
243 |
+
raise gr.Error("This model is not ready yet, you can pick another one instead :)")
|
244 |
+
|
245 |
+
gr.Info("Getting image caption with Kosmos2...")
|
246 |
+
user_prompt = get_caption(image_in)
|
247 |
+
|
248 |
+
gr.Info("Building a musical prompt according to the image caption ...")
|
249 |
+
musical_prompt = get_musical_prompt(user_prompt, chosen_model)
|
250 |
+
|
251 |
+
if chosen_model == "MAGNet" :
|
252 |
+
gr.Info("Now calling MAGNet for music...")
|
253 |
+
music_o = get_magnet(musical_prompt)
|
254 |
+
elif chosen_model == "AudioLDM-2" :
|
255 |
+
gr.Info("Now calling AudioLDM-2 for music...")
|
256 |
+
music_o = get_audioldm(musical_prompt)
|
257 |
+
elif chosen_model == "Riffusion" :
|
258 |
+
gr.Info("Now calling Riffusion for music...")
|
259 |
+
music_o = get_riffusion(musical_prompt)
|
260 |
+
elif chosen_model == "Mustango" :
|
261 |
+
gr.Info("Now calling Mustango for music...")
|
262 |
+
music_o = get_mustango(musical_prompt)
|
263 |
+
elif chosen_model == "MusicGen" :
|
264 |
+
gr.Info("Now calling MusicGen for music...")
|
265 |
+
music_o = get_musicgen(musical_prompt)
|
266 |
+
|
267 |
+
return gr.update(value=musical_prompt, interactive=True), gr.update(visible=True), music_o
|
268 |
+
|
269 |
+
def retry(chosen_model, caption):
|
270 |
+
musical_prompt = caption
|
271 |
+
|
272 |
+
if chosen_model == "MAGNet" :
|
273 |
+
gr.Info("Now calling MAGNet for music...")
|
274 |
+
music_o = get_magnet(musical_prompt)
|
275 |
+
elif chosen_model == "AudioLDM-2" :
|
276 |
+
gr.Info("Now calling AudioLDM-2 for music...")
|
277 |
+
music_o = get_audioldm(musical_prompt)
|
278 |
+
elif chosen_model == "Riffusion" :
|
279 |
+
gr.Info("Now calling Riffusion for music...")
|
280 |
+
music_o = get_riffusion(musical_prompt)
|
281 |
+
elif chosen_model == "Mustango" :
|
282 |
+
gr.Info("Now calling Mustango for music...")
|
283 |
+
music_o = get_mustango(musical_prompt)
|
284 |
+
elif chosen_model == "MusicGen" :
|
285 |
+
gr.Info("Now calling MusicGen for music...")
|
286 |
+
music_o = get_musicgen(musical_prompt)
|
287 |
+
|
288 |
+
return music_o
|
289 |
+
|
290 |
+
demo_title = "Image to Music V2"
|
291 |
+
description = "Get music from a picture, compare text-to-music models"
|
292 |
+
|
293 |
+
css = """
|
294 |
+
#col-container {
|
295 |
+
margin: 0 auto;
|
296 |
+
max-width: 980px;
|
297 |
+
text-align: left;
|
298 |
+
}
|
299 |
+
#inspi-prompt textarea {
|
300 |
+
font-size: 20px;
|
301 |
+
line-height: 24px;
|
302 |
+
font-weight: 600;
|
303 |
+
}
|
304 |
+
/* fix examples gallery width on mobile */
|
305 |
+
div#component-11 > .gallery > .gallery-item > .container > img {
|
306 |
+
width: auto!important;
|
307 |
+
}
|
308 |
+
"""
|
309 |
+
|
310 |
+
with gr.Blocks(css=css) as demo:
|
311 |
+
|
312 |
+
with gr.Column(elem_id="col-container"):
|
313 |
+
|
314 |
+
gr.HTML(f"""
|
315 |
+
<h2 style="text-align: center;">{demo_title}</h2>
|
316 |
+
<p style="text-align: center;">{description}</p>
|
317 |
+
""")
|
318 |
+
|
319 |
+
with gr.Row():
|
320 |
+
|
321 |
+
with gr.Column():
|
322 |
+
image_in = gr.Image(
|
323 |
+
label = "Image reference",
|
324 |
+
type = "filepath",
|
325 |
+
elem_id = "image-in"
|
326 |
+
)
|
327 |
+
|
328 |
+
with gr.Row():
|
329 |
+
|
330 |
+
chosen_model = gr.Dropdown(
|
331 |
+
label = "Choose a model",
|
332 |
+
choices = [
|
333 |
+
"MAGNet",
|
334 |
+
"AudioLDM-2",
|
335 |
+
"Riffusion",
|
336 |
+
"Mustango",
|
337 |
+
"MusicGen"
|
338 |
+
],
|
339 |
+
value = None,
|
340 |
+
filterable = False
|
341 |
+
)
|
342 |
+
|
343 |
+
check_status = gr.Textbox(
|
344 |
+
label="API status",
|
345 |
+
interactive=False
|
346 |
+
)
|
347 |
+
|
348 |
+
submit_btn = gr.Button("Make music from my pic !")
|
349 |
+
|
350 |
+
gr.Examples(
|
351 |
+
examples = [
|
352 |
+
["examples/ocean_poet.jpeg"],
|
353 |
+
["examples/jasper_horace.jpeg"],
|
354 |
+
["examples/summer.jpeg"],
|
355 |
+
["examples/mona_diner.png"],
|
356 |
+
["examples/monalisa.png"],
|
357 |
+
["examples/santa.png"],
|
358 |
+
["examples/winter_hiking.png"],
|
359 |
+
["examples/teatime.jpeg"],
|
360 |
+
["examples/news_experts.jpeg"]
|
361 |
+
],
|
362 |
+
fn = infer,
|
363 |
+
inputs = [image_in, chosen_model],
|
364 |
+
examples_per_page = 4
|
365 |
+
)
|
366 |
+
|
367 |
+
with gr.Column():
|
368 |
+
|
369 |
+
caption = gr.Textbox(
|
370 |
+
label = "Inspirational musical prompt",
|
371 |
+
interactive = False,
|
372 |
+
elem_id = "inspi-prompt"
|
373 |
+
)
|
374 |
+
|
375 |
+
retry_btn = gr.Button("Retry with edited prompt", visible=False)
|
376 |
+
|
377 |
+
result = gr.Audio(
|
378 |
+
label = "Music"
|
379 |
+
)
|
380 |
+
|
381 |
+
|
382 |
+
chosen_model.change(
|
383 |
+
fn = check_api,
|
384 |
+
inputs = chosen_model,
|
385 |
+
outputs = check_status,
|
386 |
+
queue = False
|
387 |
+
)
|
388 |
+
|
389 |
+
retry_btn.click(
|
390 |
+
fn = retry,
|
391 |
+
inputs = [chosen_model, caption],
|
392 |
+
outputs = [result]
|
393 |
+
)
|
394 |
+
|
395 |
+
submit_btn.click(
|
396 |
+
fn = infer,
|
397 |
+
inputs = [
|
398 |
+
image_in,
|
399 |
+
chosen_model,
|
400 |
+
check_status
|
401 |
+
],
|
402 |
+
outputs =[
|
403 |
+
caption,
|
404 |
+
retry_btn,
|
405 |
+
result
|
406 |
+
],
|
407 |
+
concurrency_limit = 4
|
408 |
+
)
|
409 |
+
|
410 |
+
demo.queue(max_size=16).launch(show_api=False)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
accelerate
|
4 |
+
moviepy
|
5 |
+
spaces
|