Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""Huggingface_Prototype.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1i--A21QuJPKdv-HM2kUrFSwj89Qfv4cb | |
""" | |
#! mkdir ~/.kaggle | |
#! cp kaggle.json ~/.kaggle/ | |
#! chmod 600 ~/.kaggle/kaggle.json | |
#!kaggle datasets download -d sercandikici/merged-dataset-electricty-weather-for-modelling | |
#! unzip merged-dataset-electricty-weather-for-modelling.zip | |
#pip install gradio | |
#from google.colab import files | |
#uploaded = files.upload() | |
#df = pd.read_csv("merged_data.csv") | |
#df.drop('is_holiday', axis=1, inplace=True) | |
#df.to_csv('merged_data_huggingface.csv', index=False) | |
#from google.colab import files | |
#files.download('merged_data_huggingface.csv') | |
from prophet import Prophet | |
import numpy as np | |
import pandas as pd | |
from matplotlib import pyplot as plt | |
import gradio as gr | |
def forecast_plot(forecast_days,test_days, days): | |
fig, ax = plt.subplots(figsize=(14, 4)) | |
ax.plot(forecast_days['ds'], forecast_days['yhat'], label='Forecast', color='green') | |
ax.scatter(test_days['ds'], test_days['y'], label='Actual', color='orange') | |
ax.set_xlabel('Date') | |
ax.set_ylabel('MGW') | |
plt.title(f'Prophet Forecast - Model 3 - {days} days horizon') | |
plt.legend() | |
return fig | |
def mean_absolute_percentage_error(y_true, y_pred): | |
y_true, y_pred = np.array(y_true), np.array(y_pred) | |
mape = np.mean(np.abs((y_true - y_pred) / y_true)) | |
return mape | |
def root_mean_squared_error(y_true, y_pred): | |
y_true, y_pred = np.array(y_true), np.array(y_pred) | |
mse = np.mean((y_true - y_pred) ** 2) | |
rmse = np.sqrt(mse) | |
return rmse | |
def r_squared(y_true, y_pred): | |
y_true, y_pred = np.array(y_true), np.array(y_pred) | |
mean_y_true = np.mean(y_true) | |
ss_total = np.sum((y_true - mean_y_true) ** 2) | |
ss_residual = np.sum((y_true - y_pred) ** 2) | |
r2 = 1 - (ss_residual / ss_total) | |
return r2 | |
def predict_and_evaluate(csv_file, days_to_predict,freq, country_name): | |
df_model = pd.read_csv(csv_file) | |
df_model.columns = ["ds", "y", "temp"] | |
df_model['ds'] = pd.to_datetime(df_model['ds']) | |
split_from = 90 * 12 | |
train_data = df_model[:-split_from] | |
test_data = df_model[-split_from:] | |
freq = freq | |
seasonality_prior_scale = 0.01 | |
changepoint_prior_scale = 0.05 | |
mcmc_samples = 50 | |
periods = days_to_predict * 12 | |
m = Prophet(mcmc_samples=mcmc_samples, changepoint_prior_scale=changepoint_prior_scale, | |
seasonality_prior_scale=seasonality_prior_scale) | |
m.add_country_holidays(country_name=country_name) | |
m.add_regressor("temp", mode="additive") | |
m.fit(train_data) | |
future = m.make_future_dataframe(periods=periods, freq=freq) | |
train_idx = future["ds"].isin(train_data.ds) | |
test_idx = ~train_idx | |
reg = ["temp"] | |
for r in reg: | |
future.loc[train_idx, r] = train_data[r].to_list() | |
for r in reg: | |
future.loc[test_idx, r] = test_data.iloc[:periods][r].to_list() | |
forecast = m.predict(future) | |
forecast_days = forecast[forecast["ds"] >= test_data["ds"].iloc[0]] | |
test_days = test_data[(test_data["ds"] >= test_data["ds"].iloc[0]) & ( | |
test_data["ds"] <= forecast_days["ds"].iloc[-1])] | |
plot = forecast_plot(forecast_days, test_days, days_to_predict) | |
mape = mean_absolute_percentage_error(test_days["y"], forecast_days["yhat"]) | |
rmse = root_mean_squared_error(test_days["y"], forecast_days["yhat"]) | |
rsqr = r_squared(test_days["y"], forecast_days["yhat"]) | |
metrics = { | |
"MAPE": round(mape,3), | |
"RMSE": round(rmse,1), | |
"R-squared": round(rsqr,3) | |
} | |
return metrics,plot | |
csv_name = "merged_data_huggingface.csv" | |
#df_merged['settlement_date'] = pd.to_datetime(df_merged['settlement_date']) | |
#df_model = df_merged[["tsd", "settlement_date", "temp"]] | |
#df_model.columns = ["y", "ds", "temp"] | |
days_to_predict = 15 # Set the default value for days to predict | |
country_name = "UK" # Set the default value for country to predict | |
freq = "2H" # Set the default value for country to predict | |
predict_and_evaluate(csv_name, days_to_predict, freq, country_name) | |
iface = gr.Interface( | |
fn=predict_and_evaluate, | |
inputs=[ | |
gr.File(label="CSV File"), | |
gr.Slider(1, 90, value=30, step=1, label="Days to Predict"), | |
gr.Textbox(label="Data Frequency", placeholder="Enter frequency (e.g., 2H for 2 hourly)"), | |
gr.Textbox(label="Country Code", placeholder="Enter country code (e.g., UK)") | |
], | |
outputs=[ | |
gr.Textbox(label=" Evaluation Metrics"), | |
"plot" | |
], | |
title="Prophet Electricty Load Forecasting Model", | |
description="Upload a CSV file of time series data to generate electricty demand forecasts using Prophet. Update country code(eg UK or DE) for holidays and data frequency", | |
examples=[ | |
["merged_data_huggingface.csv", 30, "2H", "UK"] | |
] | |
) | |
iface.launch() |