Spaces:
Runtime error
Runtime error
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
def create_demo(process):
|
4 |
+
with gr.Blocks() as demo:
|
5 |
+
with gr.Column():
|
6 |
+
prompt = gr.Textbox(label='Prompt')
|
7 |
+
n_prompt = gr.Textbox(
|
8 |
+
label='Negative Prompt',
|
9 |
+
value=
|
10 |
+
'low quality, ugly, disfigured, deformed'
|
11 |
+
)
|
12 |
+
|
13 |
+
run_button = gr.Button('Run')
|
14 |
+
result = gr.Gallery(label='Output',
|
15 |
+
show_label=False,
|
16 |
+
elem_id='gallery').style(columns=1, rows=1, preview=True)
|
17 |
+
|
18 |
+
inputs = [
|
19 |
+
prompt,
|
20 |
+
n_prompt
|
21 |
+
]
|
22 |
+
prompt.submit(
|
23 |
+
fn=process,
|
24 |
+
inputs=inputs,
|
25 |
+
outputs=result
|
26 |
+
)
|
27 |
+
prompt.submit(
|
28 |
+
fn=process,
|
29 |
+
inputs=inputs,
|
30 |
+
outputs=result
|
31 |
+
)
|
32 |
+
|
33 |
+
run_button.click(
|
34 |
+
fn=process,
|
35 |
+
inputs=inputs,
|
36 |
+
outputs=result
|
37 |
+
)
|
38 |
+
return demo
|
39 |
+
|
40 |
+
|
41 |
+
if __name__ == '__main__':
|
42 |
+
from model import Model
|
43 |
+
model = Model()
|
44 |
+
demo = create_demo(model.process)
|
45 |
+
demo.queue().launch()
|
model.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
|
2 |
+
import torch
|
3 |
+
import PIL.Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class Model:
|
7 |
+
def __init__(self):
|
8 |
+
modelID = "runwayml/stable-diffusion-v1-5"
|
9 |
+
#pipeline = StableDiffusionPipeline.from_pretrained(modelID, torch_dtype=torch.float16)
|
10 |
+
self.pipe = StableDiffusionPipeline.from_pretrained(modelID)
|
11 |
+
#prompt = "a photo of an astronaut riding a horse on mars"
|
12 |
+
#n_prompt = "deformed, disfigured"
|
13 |
+
|
14 |
+
def process(self,
|
15 |
+
prompt: str,
|
16 |
+
negative_prompt: str,
|
17 |
+
guidance_scale:int = 7,
|
18 |
+
num_images:int = 1,
|
19 |
+
num_steps:int = 2,
|
20 |
+
) -> list[PIL.Image.Image]:
|
21 |
+
seed = np.random.randint(0, np.iinfo(np.int64).max)
|
22 |
+
generator = torch.Generator().manual_seed(seed)
|
23 |
+
return self.pipe(prompt=prompt,
|
24 |
+
negative_prompt=negative_prompt,
|
25 |
+
guidance_scale=guidance_scale,
|
26 |
+
num_images_per_prompt=num_images,
|
27 |
+
num_inference_steps=num_steps,
|
28 |
+
generator=generator).images
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
# image = pipeline(prompt=prompt,
|
34 |
+
# negative_prompt = n_prompt,
|
35 |
+
# num_inference_steps = 2,
|
36 |
+
# guidance_scale = 7).images
|
37 |
+
|
38 |
+
|