Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,7 @@ async def predict(model: UploadFile = File(...), data: str = None):
|
|
19 |
|
20 |
# Load the model
|
21 |
model = load_model(temp_model_path, compile=False)
|
|
|
22 |
|
23 |
# Process the data
|
24 |
data = np.array(eval(data)).reshape(1, 12, 1)
|
@@ -37,12 +38,11 @@ async def retrain(model: UploadFile = File(...), data: str = None):
|
|
37 |
temp_model_file.write(await model.read())
|
38 |
temp_model_path = temp_model_file.name
|
39 |
|
40 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".npy") as temp_data_file:
|
41 |
-
temp_data_file.write(await data.read())
|
42 |
-
temp_data_path = temp_data_file.name
|
43 |
|
44 |
# Load the model and data
|
45 |
model = load_model(temp_model_path, compile=False)
|
|
|
|
|
46 |
dataset = np.array(eval(data)).reshape(1, 12, 1)
|
47 |
|
48 |
# Normalize the data
|
@@ -60,7 +60,7 @@ async def retrain(model: UploadFile = File(...), data: str = None):
|
|
60 |
y_train = np.array(y_train)
|
61 |
|
62 |
model.compile(optimizer=Adam(learning_rate=0.001), loss="mse", run_eagerly=True)
|
63 |
-
model.fit(x_train, y_train, epochs=
|
64 |
|
65 |
# Save the updated model to a temporary file
|
66 |
updated_model_path = temp_model_path.replace(".h5", "_updated.h5")
|
|
|
19 |
|
20 |
# Load the model
|
21 |
model = load_model(temp_model_path, compile=False)
|
22 |
+
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse', run_eagerly=True)
|
23 |
|
24 |
# Process the data
|
25 |
data = np.array(eval(data)).reshape(1, 12, 1)
|
|
|
38 |
temp_model_file.write(await model.read())
|
39 |
temp_model_path = temp_model_file.name
|
40 |
|
|
|
|
|
|
|
41 |
|
42 |
# Load the model and data
|
43 |
model = load_model(temp_model_path, compile=False)
|
44 |
+
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse', run_eagerly=True)
|
45 |
+
|
46 |
dataset = np.array(eval(data)).reshape(1, 12, 1)
|
47 |
|
48 |
# Normalize the data
|
|
|
60 |
y_train = np.array(y_train)
|
61 |
|
62 |
model.compile(optimizer=Adam(learning_rate=0.001), loss="mse", run_eagerly=True)
|
63 |
+
model.fit(x_train, y_train, epochs=1, batch_size=32)
|
64 |
|
65 |
# Save the updated model to a temporary file
|
66 |
updated_model_path = temp_model_path.replace(".h5", "_updated.h5")
|