Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, UploadFile, File, HTTPException | |
from fastapi.responses import FileResponse | |
from tensorflow.keras.models import load_model, Sequential | |
from tensorflow.keras.layers import Dense, LSTM | |
from tensorflow.keras.optimizers import Adam | |
import traceback | |
from sklearn.preprocessing import MinMaxScaler | |
import numpy as np | |
import tempfile | |
import os | |
app = FastAPI() | |
async def predict(model: UploadFile = File(...), data: str = None): | |
try: | |
# Save the uploaded model to a temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".h5") as temp_model_file: | |
temp_model_file.write(await model.read()) | |
temp_model_path = temp_model_file.name | |
ds = eval(data) | |
ds = np.array(ds).reshape(-1, 1) | |
# Normalize the data | |
scaler = MinMaxScaler() | |
ds_normalized = scaler.fit_transform(ds) | |
# Load the model | |
model = load_model(temp_model_path, compile=False) | |
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse', run_eagerly=True) | |
print(data) | |
# Process the data | |
predictions = model.predict(ds_normalized.reshape(1, 12, 1)).tolist() | |
predictions_rescaled = scaler.inverse_transform(predictions).flatten().tolist() | |
return {"predictions": predictions_rescaled} | |
except Exception as e: | |
print(traceback.format_exc()) | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def retrain(model: UploadFile = File(...), data: str = None): | |
try: | |
# Save the uploaded model and data to temporary files | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".h5") as temp_model_file: | |
temp_model_file.write(await model.read()) | |
temp_model_path = temp_model_file.name | |
# Load the model and data | |
model = load_model(temp_model_path, compile=False) | |
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse', run_eagerly=True) | |
ds = eval(data) | |
ds = np.array(ds).reshape(-1, 1) | |
# Normalize the data | |
scaler = MinMaxScaler() | |
ds_normalized = scaler.fit_transform(ds) | |
x_train = np.array([ds_normalized[i - 12:i] for i in range(12, len(ds_normalized))]) | |
y_train = ds_normalized[12:] | |
model.compile(optimizer=Adam(learning_rate=0.001), loss="mse", run_eagerly=True) | |
model.fit(x_train, y_train, epochs=1, batch_size=32) | |
# Save the updated model to a temporary file | |
updated_model_path = temp_model_path.replace(".h5", "_updated.h5") | |
model.save(updated_model_path) | |
# Return the path for downloading | |
return FileResponse( | |
path=updated_model_path, | |
filename="updated_model.h5", | |
media_type="application/octet-stream", | |
headers={"Content-Disposition": "attachment; filename=updated_model.h5"} | |
) | |
except Exception as e: | |
print(traceback.format_exc()) | |
raise HTTPException(status_code=500, detail=str(e)) | |
finally: | |
# Clean up temporary files | |
if os.path.exists(temp_model_path): | |
os.remove(temp_model_path) | |