Face-Detection / app.py
sdafd's picture
Update app.py
c33792d verified
raw
history blame
1.15 kB
import gradio as gr
from mtcnn.mtcnn import MTCNN
import cv2
import numpy as np
import json
# Function to detect faces using MTCNN
def detect_faces(image):
# Convert image to RGB format
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Detect faces using MTCNN
detector = MTCNN()
faces = detector.detect_faces(image_rgb)
# Extract and format face information
formatted_faces = [{"x": face['box'][0], "y": face['box'][1], "width": face['box'][2], "height": face['box'][3]} for face in faces]
# Draw bounding boxes around detected faces
for face in faces:
x, y, width, height = face['box']
cv2.rectangle(image, (x, y), (x + width, y + height), (255, 0, 0), 2)
return image, json.dumps(formatted_faces)
# Gradio Interface
iface = gr.Interface(
fn=detect_faces,
inputs=gr.Image(type="numpy", label="Input Image"),
outputs=[gr.Image(type="numpy", label="Output Image"), gr.Textbox(label="Face Coordinates")],
live=True,
title="MTCNN Face Detection",
description="Detect faces in an image using MTCNN.",
)
# Launch the Gradio Interface
iface.launch(share=True)
###