Spaces:
Running
on
A10G
Running
on
A10G
# Reference: | |
# https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/transformer_decoder/position_encoding.py | |
# https://github.com/tatp22/multidim-positional-encoding/blob/master/positional_encodings/torch_encodings.py | |
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
def get_emb(sin_inp: torch.Tensor) -> torch.Tensor: | |
""" | |
Gets a base embedding for one dimension with sin and cos intertwined | |
""" | |
emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1) | |
return torch.flatten(emb, -2, -1) | |
class PositionalEncoding(nn.Module): | |
def __init__(self, | |
dim: int, | |
scale: float = math.pi * 2, | |
temperature: float = 10000, | |
normalize: bool = True, | |
channel_last: bool = True, | |
transpose_output: bool = False): | |
super().__init__() | |
dim = int(np.ceil(dim / 4) * 2) | |
self.dim = dim | |
inv_freq = 1.0 / (temperature**(torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
self.normalize = normalize | |
self.scale = scale | |
self.eps = 1e-6 | |
self.channel_last = channel_last | |
self.transpose_output = transpose_output | |
self.cached_penc = None # the cache is irrespective of the number of objects | |
def forward(self, tensor: torch.Tensor) -> torch.Tensor: | |
""" | |
:param tensor: A 4/5d tensor of size | |
channel_last=True: (batch_size, h, w, c) or (batch_size, k, h, w, c) | |
channel_last=False: (batch_size, c, h, w) or (batch_size, k, c, h, w) | |
:return: positional encoding tensor that has the same shape as the input if the input is 4d | |
if the input is 5d, the output is broadcastable along the k-dimension | |
""" | |
if len(tensor.shape) != 4 and len(tensor.shape) != 5: | |
raise RuntimeError(f'The input tensor has to be 4/5d, got {tensor.shape}!') | |
if len(tensor.shape) == 5: | |
# take a sample from the k dimension | |
num_objects = tensor.shape[1] | |
tensor = tensor[:, 0] | |
else: | |
num_objects = None | |
if self.channel_last: | |
batch_size, h, w, c = tensor.shape | |
else: | |
batch_size, c, h, w = tensor.shape | |
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape: | |
if num_objects is None: | |
return self.cached_penc | |
else: | |
return self.cached_penc.unsqueeze(1) | |
self.cached_penc = None | |
pos_y = torch.arange(h, device=tensor.device, dtype=self.inv_freq.dtype) | |
pos_x = torch.arange(w, device=tensor.device, dtype=self.inv_freq.dtype) | |
if self.normalize: | |
pos_y = pos_y / (pos_y[-1] + self.eps) * self.scale | |
pos_x = pos_x / (pos_x[-1] + self.eps) * self.scale | |
sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq) | |
sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq) | |
emb_y = get_emb(sin_inp_y).unsqueeze(1) | |
emb_x = get_emb(sin_inp_x) | |
emb = torch.zeros((h, w, self.dim * 2), device=tensor.device, dtype=tensor.dtype) | |
emb[:, :, :self.dim] = emb_x | |
emb[:, :, self.dim:] = emb_y | |
if not self.channel_last and self.transpose_output: | |
# cancelled out | |
pass | |
elif (not self.channel_last) or (self.transpose_output): | |
emb = emb.permute(2, 0, 1) | |
self.cached_penc = emb.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
if num_objects is None: | |
return self.cached_penc | |
else: | |
return self.cached_penc.unsqueeze(1) | |
if __name__ == '__main__': | |
pe = PositionalEncoding(8).cuda() | |
input = torch.ones((1, 8, 8, 8)).cuda() | |
output = pe(input) | |
# print(output) | |
print(output[0, :, 0, 0]) | |
print(output[0, :, 0, 5]) | |
print(output[0, 0, :, 0]) | |
print(output[0, 0, 0, :]) | |